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Abstract

In this work, we consider the task of detect-
ing anomalous nodes in static attributed graphs
in the absence of labeled samples. Anomaly (or
outlier) detection is generally a difficult problem
to solve. This is due to the absence of a con-
crete definition of what constitutes an anomaly,
but also because anomalies themselves occur
very rarely and finding enough samples to learn
from is often impossible. In this work, we pro-
pose two methods that combine Graph Neural
Networks (GNNs) with a self-supervised train-
ing scheme to learn a representation of nor-
mal (non-anomalous) nodes in the graph, and
identify anomalies using these learned represen-
tations. Both models, called HideGNN and
MaskGNN, use a mask-based self-supervision ap-
proach, whereby the algorithm is set up to pre-
dict the masked or hidden features of nodes at
train time. We show experimentally that our
approach outperforms known baselines on real-
world datasets and we explore the power of the
methods in detecting specific types of anomalies
with synthetic data.

1 Introduction

Anomaly detection refers to the problem of identifying
the samples in a dataset that are “out of the ordinary”,
or finding an observation that “differs so much from other
observations as to arouse suspicion that it was generated
by a different mechanism” [16]. The problem itself is ill-
posed, as the definition of what constitutes an anomaly
(or an outlier) is vague and often depends heavily on
the application domain. As such, anomaly detection is a
challenging task to solve, which is made even more daunt-
ing by the fact that anomalies are extremely rare in prac-
tice and labeled data samples are effectively non-existent.
Nevertheless, anomaly detection is an important task
that has been studied extensively and has applications
in many areas such as healthcare [21], finance [39], cy-
bersecurity [15, 30], and sensor networks [8].

In this work, we are interested in detecting anomalies
in static graph-structured datasets where labeled anoma-
lous samples are not available at train time. More pre-
cisely, we want to identify the anomalous nodes of the

input graph; these are the nodes that differ significantly
from the majority of remaining nodes in the graph, in
terms of their features, their relations to other nodes, or
both. The ability to accurately find anomalies enhances
our capacity to solve many common real-life problems,
such as identifying bots or spammers in a social network,
detecting fraud in financial transactions, identifying out-
liers in groups of people, etc. Moreover, having a good
anomaly detection algorithm on graphs can be useful in
improving other graph-based problems, such as cluster-
ing or classification.

The challenge of anomaly detection in unstructured
data (such as a collection of images) differs slightly from
that of identifying outliers in graph datasets, where an
explicit relationship is defined between sample pairs.
While in the former case each data object can be treated
independently, nodes in a graph-structured dataset ex-
hibit explicit inter-dependencies that need to be consid-
ered during the detection process. The nature of anoma-
lies in a graph can, in addition, be relational: a data
object that may be anomalous due solely to its own fea-
tures, may be highly unusual if we consider its relation-
ships with other nodes (e.g., its neighbors in the graph).
Thus, in a graph with node features, anomalies come in
different forms (related — with important differences1—
to the three cases of Bojchevski and Günnemann [2]).

• Feature-based anomalies: anomalous nodes can
be identified when considering only the node fea-
tures, disregarding the structure of the graph. For
example, some nodes may have unusually large fea-
tures, or unexpected combinations of features.

• Graph-based anomalies: anomalous nodes can
be identified when considering only the graph
structure. For example, some nodes may have un-
usually low or high degree, or may have neighbors
belonging to unusual combinations of clusters.

• Joint anomalies: anomalous nodes can only be
identified when jointly considering node features
and graph structure. For example, a node could
have commonly-seen features and belong to a typ-
ical graph community, yet be anomalous due to
those features being unusual for that specific graph
community.

1The three cases discussed in [2] are not mutually exclusive. Cases 1 and 3 both imply feature-based anomalies; cases 2 and 3 both
imply graph-based anomalies. Our joint anomalies are not explicitly addressed in [2], but the PAICAN model it introduces can detect
them to some extent (see Figures 4 and 5).
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As the graph structure is an important considera-
tion when detecting anomalies, techniques that perform
well in finding anomalies in unstructured data may per-
form poorly when the dataset is relational. Therefore, to
have a better handle on the problem, methods that take
into account the neighborhood information of nodes are
needed.

One common approach to anomaly detection is learn-
ing the distribution of the input dataset [25]. This ap-
proach hinges on the assumption that anomalies are ex-
tremely rare, and most of the data objects are in fact
“normal” samples. Hence, by learning the distribution
of the input samples, one can expect to approximate the
overall distribution of the dataset reasonably well. The
likelihood of each sample can then be obtained, and the
ones with lowest likelihood are classified as anomalous.
We follow this approach for detecting anomalies in graph-
structured data, with the distinction in the way we ap-
proximate the distribution of the input graph: by taking
into account the explicit relationships between nodes.

Learning from graph-structured data has garnered
a lot of attention recently [27, 8, 9], and research on
the topic has intensified due to recent abundance of
datasets in applications such as social networks, cyberse-
curity, and online retail. Subsequently, the development
of neural architectures, such as Graph Neural Networks
(GNNs) [7, 22, 10, 14], has shown promising results in
tasks like node classification and link prediction, fan-
ning the research flames even further. GNNs learn a
representation of the graph through a message-passing
scheme [10], whereby the representation of a node is up-
dated at every step of the algorithm based on the rep-
resentation of its neighbors. These learned representa-
tions are invariant to the ordering of the nodes within
the dataset, as well as around the neighborhoods of each
node.

It is in this context (further detailed in Section 2)
that we propose two self-supervised learning models
for anomaly detection: HideGNN and MaskGNN (Sec-
tion 3). We conduct experiments on real-world datasets
and discuss them in detail in Section 4. We also gener-
ate a synthetic dataset and use it to explore the capacity
of our methods for detecting joint anomalies; we present
these results in Section 5. Finally, Section 6 concludes
the paper.

2 Related Work

Detecting anomalies in structured data is a topic studied
in different disciplines, and various techniques have been
developed to tackle the problem. In this work, we con-
centrate on anomaly detection in static graph-structured
data where labels are not available (unsupervised). We
group related work into the following three categories.

2.1 Anomaly detection on graphs.

Anomaly detection in graphs has been a focus of re-
searchers for the last two decades [1]. Problems using
anomaly detection methods on graphs include identify-
ing spam [3, 35, 26], finding click fraud [19, 23], and
detecting malware [18, 28, 37]. Recent methods in this
area have addressed the problem by comparing the topo-
logical information of each node with their features, and
possibly with those of their neighbors. Two particular
methods have shown promising results: (a) analyzing
graphs at multiple scales and identifying anomalies at
each of these scale [13], and (b) combining a clustering
algorithm with an anomaly detection algorithm to high-
light several types of anomalies [2]. These two methods
assume that anomalous nodes strongly depend on the
interactions between the graph topology and the node
features.

2.2 Anomaly detection with neural net-
works.

To our knowledge, there is little body of work in the
deep neural network literature that focuses on anomaly
detection in graphs. However, there exist multiple al-
gorithms on anomaly detection on non-structured data
(e.g., in images or time-series [4]), that often use energy-
based methods [25, 47]. More recently, a combination
of energy-based methods and generative adversarial net-
works [11, 12, 5] has shown promising results in finding
anomalies [24].

2.3 Self-supervised learning on graphs.

Graph neural networks were first introduced by Kipf
and Welling [22] and research in this area has seen
great progress since. These methods are very successful
in learning effective representations of relational data.
GNN architectures are designed to capture the neigh-
borhood information of every node and generate embed-
dings that are sensitive to local graph structure. These
embeddings are used to efficiently solve several tasks
such as node classification [41, 14, 38], graph classifica-
tion [44, 32], and link prediction [43, 40, 6]. Over the last
few years, methods for training GNNs without supervi-
sion have attracted more attention [27, 42], especially
due to the high cost of labelling datasets. Many such
methods usually learn relevant representations of the in-
put graph as a pre-training step, then apply the down-
stream task (such as node classification) methods. When
properly used, they show state-of-the-art results on the
three tasks mentioned above: node classification [20, 29],
graph classification [46], and link prediction [36].
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Figure 1: A representation of the method of this paper. We first use the power of Graph Neural Networks to create
a reproduction (in red) of the node features (in green). This reproduction is based on the features of the neigh-
borhoods of the nodes and uses the general distribution of the features to reach its optimum. These reproduced
features are then used to augment the original dataset, which is then put as input of standard anomaly detection
algorithms. These method show state-of-the-art results and greatly improves the performances of the algorithms
(see Table 2).

3 Proposed Method

In this section, we present our general framework for
detecting anomalies in graph-structured datasets, also
summarized in Figure 1. This framework contains a
self-supervised learning step, for which we describe two
methods that use GNNs to learn node representations.
With this framework, we first train a model in a self-
supervised manner with the input dataset (G,X ) (con-
sisting of a graph structure G and a set of node features
X ) in order to reproduce the node features. The repro-

duced features X̂ are an approximation of the original
features X and are combined with X using some opera-
tor ~ to obtain an augmented set of features. We finally
apply an existing anomaly detection algorithm to the
augmented dataset (G,X ~ X̂ ). Note that the original
and augmented datasets have the same graph structure,
but differ in their node features.

Conceptually, the proposed method first learns what
a “normal” node in the graph looks like, using both the
node features and the local neighborhood of each node,
then classifies the nodes that are far from that normal as
anomalous. This approach accommodates the two im-
portant assumptions that (1) anomalies are extremely
rare, and thus the input graph consists almost entirely
of normal nodes; and (2) we are not given a definition
of anomalous nodes, nor any examples of such nodes in
the input dataset. In this work, we consider undirected
and unweighted graphs, but all our algorithms can also
be applied (with minimal adjustment) to directed graphs
with weighted edges.

In what follows, we present two GNN-based mod-
els that perform feature-estimation task described above
through self-supervision on the node features of the in-
put graph. Both methods rely on masking out some of
the features of the input nodes at train time, rewarding
the model when masked features are correctly predicted.
The two methods differ by the choice of how this feature
masking occurs during the learning iteration. Once the
model has learned to approximate the input graph, we

use this learned function to compute a measure of how
anomalous each node is (detailed in Section 4).

3.1 Graph Neural Networks

Let G = (V,E) be a graph with a set V of nodes and a
set E of undirected edges connecting pairs of nodes in
V , along with a set of node features X = {Xv : v ∈ V }
where Xv ∈ Rdf is the df -dimensional feature of node
v ∈ V . We write Xv[j] for the j-th entry of the vector
Xv.

Graph Neural Networks (GNNs) are multi-layered
neural networks N that use the graph and node fea-
ture information to generate embeddings hv ∈ Rdh , for
all v ∈ V , using a message-passing scheme that aggre-
gates neighboring representations at each layer. We let

h
(`)
v ∈ Rd

(`)
h be the hidden representation of node v ∈ V

learned at the `th layer, and initialize h
(0)
v = Xv for all

v ∈ V . The neighborhood of a node v is the set of all its
adjacent nodes, that is N (v) = {u | (u, v) ∈ E}.

A GNN with L layers updates the hidden features

h
(`)
v at layer ` for all the vertices v ∈ V simultaneously

(for ` = 0, . . . , L− 1).

h(`+1)
v = Update(`)

(
Aggregate(`)

({
h(`)u : u ∈ N (v)

}))
.

The function Aggregate combines the representations
of v and its neighbors obtained from the previous layer,
and Update uses this combined embedding to update
the hidden representation of node v. Aggregate is
most commonly defined as the sum of the neighbor nodes
multiplied by a matrix of weights, but other possible
functions exist, such as weighted sum [22], set pool-
ing [45], or neighborhood attention [41]. Update is gen-
erally a non-linear function.

The two models we describe in subsequent sections
use GNNs with L = 2 layers. We define the Aggregate
function as the sum of the hidden representations of the
neighboring nodes multiplied by a matrix of weights. Our
Update function is a simple ReLU activation function
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for the first layer, and the identity for the second layer.
Choosing the identity for the second layer allows us to
have negative values as the output of our models, thus
ensuring the capacity to reproduce the original features.

In summary, we use GNNs N that take the hidden
representation h(0) = X as input and output h(2) =
N(X ), with

h(2)v = W1 · h(1)v + C ·W2 ·
∑

u∈N (v)

h(1)u

and

h(1)v = σ


W3 · h(0)v + C ·W4 ·

∑

u∈N (v)

h(0)u


 ,

where σ(x) = max(0, x), C ∈ {0, 1} is a hyperparameter,
and (W1,W2,W3,W4) constitute the learned parameters
of the model.

In what follows, we introduce two different GNN algo-
rithms for reproducing the node features X . We denote
such reproduced features as X̂ .

MaskGNNHideGNN

1Figure 2: How HideGNN and MaskGNN differ in the
way they train. The node features (green blocks) are
used by the GNN to learn an embedding for each node
(red blocks). HideGNN (left) hides one feature (the top
feature in this example) and learns a reproduction of
the hidden feature (in red). By hiding one feature after
the other, we are able to reproduce the original features.
MaskGNN (right) masks random features over the whole
dataset (the shaded features in this example), before only
optimizing the embeddings where there was a mask (the
non-shaded embeddings in red). By randomly changing
the mask, we optimize the reproduced features over all
possible values, while avoiding trivial solutions.

3.2 HideGNN

Our first model, called HideGNN, uses multiple GNNs
to predict the node features, with each GNN specializ-
ing in a specific feature. Concretely, each GNN receives

as input the original graph together with a version of
the input features in which one of the features is hidden;
the goal of the GNN is to predict the hidden features
(Figure 2, left).

Let Xj
u ∈ Rnf−1 be the features of node u such that

the jth feature is removed, and let X j = {Xj
u | u ∈ V }.

Define N1, . . . , Nnf to be a set of GNNs such that N j

takes as input X j (together with the graph G) and out-
puts its prediction for the jth (hidden) features of the
nodes in V . The loss function for each GNN is defined
as the L2 norm (squared distance) between the predicted
and actual features

Φ
(
N j(X j)

)
=
∑

v∈V

(
N j(X j)v −Xv[j]

)2
.

The final prediction X̂ of every node features is set as
the concatenation of the features given by the different
GNNs N(X )[j] = N j(X j), and the model loss function
is defined as the following sum

L
(
N(X )

)
=

nf∑

j=1

Φ
(
N j(X j)

)
. (1)

The HideGNN model is powerful in representing node
features but it is slow to train, since it uses multiple
GNNs.

3.3 MaskGNN

Our second model, called MaskGNN, uses a single GNN
N that takes as input the graph G and all the features
X and directly outputs a reproduction of the features.
During the training phase, it masks some of the input
features for each node sample and tries to predict the
masked value (Figure 2, right).

Define the mask Mv of node v ∈ V to be a binary
vector of length nf , and let XM be the set of masked
features such that the jth feature of XM

v is masked if
and only if the bit at position j of the mask is zero, that
is Mv[j] = 0. At train time, the model generates a ran-
dom mask for each node feature, and learns to predict
the masked values. The loss function of this model is as
follows.

L
(
N(X )

)
=
∑

v∈V

(
Mv ·

(
N(XM )v −Xv

))2
. (2)

By going over multiple random masks M , this algorithm
learns a general (non-trivial) representation of the fea-

tures. The final prediction X̂ of the node features is the
output of N when applied to the unmasked X (or, equiv-
alently, when the mask M is all true).

The MaskGNN model is fast to train and uses a sin-
gle GNN; however the model has more parameters than
HideGNN. As there is no clear advantage of one model
over the other when it comes to training efficiency, we
consider both models in this paper.
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4 Experiments

Our experiments focus on unsupervised anomaly detec-
tion, where we evaluate the effect of pre-training the in-
put graph dataset with a GNN approach. We select four
anomaly detection methods, and compare their results
with and without pre-training using each of HideGNN
and MaskGNN.

Datasets. To test our anomaly detection approach, we
use three real-life datasets: Books [34], Disney [34], and
Enron [31]. Both Disney and Books are co-purchase net-
works extracted from Amazon Marketplace. Nodes in
these datasets have attributes describing properties of
online items (e.g., rating, selling price, etc.), combined
with ground truth anomalies labeled through two distinct
processes. Anomalies in Disney are labeled manually by
high school students, where a node (with 32 features) is
labeled as anomalous if it is tagged anomalous by at least
50% of users. In the Books dataset, ground truth anoma-
lies are defined as nodes (with 21 features) having the tag
amazonfail. Enron is a dataset of communication network
with edges indicating email transmission between people.
Each node contains 18 attributes describing metadata
of the message (e.g., content length, number of recipi-
ents, etc.). Spammers are labeled as anomalous in this
dataset. Enron has been extensively used as a benchmark
for spam detection. In MADAN [13], these datasets are
used in one of two formats: the original one, or a re-
duced version. The original dataset is the one commonly
accessible, whereas the reduced version corresponds to
the same graph-structure, but with a subset of the node
features. We run our experiments on both versions of
the datasets: the original one, and the reduced one. The
statistics of all datasets are listed in Table 1.

Books Disney∗ Enron∗
Nodes 1,418 124 13,533
Edges 3,695 335 176,987

Features (original) 21 32 18
Features (reduced) 20 2 5

Anomalies 28 6 5

Table 1: Statistics of the three anomaly datection
datasets in their two formats: original and reduced. The
two datasets marked with ∗ do not have a validation set
with anomalies.

An important property of these datasets is that they
do not define a validation set. In order to properly
tune our hyperparameters, we create a validation set for
Books by randomly splitting the set of normal nodes and
anomalies into two subsets. The validation set corre-
sponds to the first set of normal nodes and anomalies
(composed of 695 normal nodes and 14 anomalies) and
the rest is used as test set (the remaining 695 normal
nodes and 14 anomalies). Validation sets were created for

Disney and Enron, but only composed of normal nodes,
due to the small number of anomalies (6 and 5, respec-
tively). Details on the results and training on all datasets
are given below.

Algorithms. We consider four existing Anomaly De-
tection Algorithms (ADAs). The first ADA is a simple
One-Class Support Vector Machine (OCSVM) that sepa-
rates anomalous nodes from the rest. The second ADA,
called MEG [24] (Maximum Entropy Generators), is a
generative-adversarial model that learns an energy func-
tion indicating the probability that a node is anomalous.
Both MEG and OCSVM perform unsupervised anomaly
detection on unstructured data: they only have access
to the node features X , and as such can only possibly
detect feature-based anomalies.

In contrast, the two remaining ADAs have access
to the graph structure G in addition to the node fea-
tures X : they could a priori detect the three forms of
anomalies discussed in the introduction. MADAN [13]
(Multi-scale Anomaly Detection on Attributed Net-
works), relies on multi-level community detection ,
while PAICAN [2] (Partial Anomaly Identification and
Clustering in Attributed Networks) is a variational
expectation-maximization approach learning the distri-
bution of normal nodes.

Used on their own directly on un-augmented datasets,
these four ADAs are the baselines to which we compare
our approach. However, since our approach consists of
augmenting datasets before applying an ADA (Figure 1),
we also include the same four ADAs in our methods and
results.

pre-training. The two models HideGNN and
MaskGNN are self-supervised methods designed to re-
produce the features of the nodes of the graph, and in
doing so, conceptually learn what most non-anomalous
nodes in the graph look like. These reproduced features
are based on the graph structure and the node attributes,
and we treat them as additional input for the anomaly
detection models in order to augment the original dataset
in various ways.

For the pre-training task, we perform a full explo-
ration of the Cartesian product of the parameters within
a certain range. Since we want our algorithm to trans-
fer well from one dataset to another, we normalize the
parameters when possible. For example, we define the
number of masked entries in MaskGNN as a percentage
rather than a given number. To normalize the learn-
ing rate given a set of other parameters (such as input
dropout, weight decay, etc), we first experiment with
a set of decreasing values for the learning rate (1, 0.1,
0.01, etc). For a given learning rate experiment, we stop
training as soon as the model is stable, that is the loss
does not diverge to infinity after 20 epochs; we record
this learning rate λstable after 20 epochs. Given the
hyperparameters dλ, dL ∈ N∗ (which we tune in these
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experiments), we re-run our experiments by setting the
learning rate to λstable/dλ, record the loss L20 after 20
epochs, and use the early stopping criteria L20/dL. We
use SGD optimizer and the losses defined in Equation (1)
for HideGNN, and Equation (2) for MaskGNN.

Dataset augmentation. Once the pre-training task is
over, we augment the original dataset by combining it
with the output features reproduced by HideGNN and
MaskGNN. Recall that this augmentation only affects
the features of the graph and leaves edges intact. Let X
and X̂ be the original and reproduced features, respec-
tively. We implement four types of node feature aug-
mentations through the operator ~, which we treat as a
hyperparameter. These augmentation methods are:

• Replacement : X is replaced by the reproduced fea-
tures, that is X ~ X̂ := X̂ ;

• Concatenation: X is replaced by the concatenation
of the two sets of features, that is X~X̂ := (X , X̂ );

• Difference: X is replaced by the difference between
the two sets of features, that is X ~ X̂ := X − X̂ ;

• Concatenation of the difference: X is replaced by
the concatenation of the original features and the
difference between the two sets of features, that is
X ~ X̂ := (X ,X − X̂ ).

Training and hyperparameters. Given that Books is
the only dataset with a validation set, we tune the hy-
perparameters of the models on the Books validation set.
For the different baseline algorithms, due to the small
range of hyperparameter values (less than 100), we sim-
ply select the best result on the validation set and report
the corresponding value on the test set. For HideGNN
and MaskGNN, due to the large range of hyperparame-
ter values (ranging from 10.000 to 12.000.000), we select
the best 100 experiments and report the corresponding
average value and standard deviation on the test set. We
then use the same hyperparameters selected based on the
Books validation set to obtain the corresponding results
on the test sets of Disney and Enron.

Results. We evaluate model performance with the re-
ceiver operating characteristic Area Under the Curve
(AUC), which corresponds to the likelihood of prop-
erly identifying the anomalous node between two nodes,
one selected uniformly at random among the anomalous
nodes and the other selected uniformly at random among
the normal ones. In particular, an AUC smaller than
50% indicates that the performance of the given model is
worse than random. We compare our method to the four
ADAs described above, both before and after using our
two pre-training algorithms HideGNN and MaskGNN.
We summarize our results in Table 2.

As expected, the results are better and more stable
on Books, since this is the only dataset with a proper

validation set, which we use to tune the model hyperpa-
rameters. On this dataset, every case but one (applying
MEG on the original dataset) is improved by applying
our pre-training. Moreover, our method shows state-of-
the-art results when combined with PAICAN on the re-
duced dataset. Apart from the best result, the table also
shows significant improvements in the AUC when using
our pre-training method, especially on OCSVM, but also
on MADAN. This indicates that our algorithms improve
previous techniques.

Recall from Table 1 that Disney and Enron respec-
tively contain only 6 and 5 labeled anomalies: this is not
enough to afford proper validation sets, which is why we
transfer the hyperparameters tuned on Books to those
two datasets. This situation also explains the high vari-
ability seen in Table 2 for Disney and Enron. It is difficult
to get a clear message here: we report these numbers
for the sake of transparency, and emphasize that more
weight should be given to our results on Books.

It should be noted that the original MADAN pa-
per [13] reports results for the reduced versions of the
Books, Disney and Enron datasets of respectively 68, 93
and 66 percent. In that paper, they preferred a different
approach to cope with the lack of proper validation sets:
they try different values of time scale and report the
best results. This different approach explains the dis-
crepancies with the corresponding numbers we report,
namely 45.54, 19.49 and 73.64.

Overall, our two algorithms, HideGNN and
MaskGNN, show promising results and could lead the
way to further studies on anomaly detection in static
attributed graphs.

5 Synthetic Dataset

To better understand the capabilities of our methods in
finding anomalies, we perform further experiments with
HideGNN and MaskGNN on a synthetic dataset called
Thanksgiving. In this section, we present this dataset,
discuss the results of our experiments, and demonstrate
that pre-training with MaskGNN and HideGNN im-
proves detection of anomalies coming from a combination
of the features and the graph structure.

As discussed in the Introduction, anomalies in a
graph-structured datasets can be grouped into three cat-
egories: feature-based, graph-based, and joint. Feature-
based anomalies do not depend on the node neighbor-
hood structure and can be detected by existing ap-
proaches that take into account only the sample features.
Graph-based anomalies are only dependent on the con-
nectivity structure of the node, and can be addressed
using various exiting techniques that are clustering or
community detection based. In this section, we are in-
terested in joint anomalies, which depend on both the
features of the nodes as well as their connectivity struc-
ture. To give an example of a joint anomaly, consider a
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Books Disney∗ Enron∗
Original Reduced Original Reduced Original Reduced

OCSVM† 35.90‡ 37.33‡ 36.44‡ 85.88‡ 55.90‡ 43.22‡

Hide + OCSVM 49.58 (±1.47) 52.21 (±2.41) 46.97 (±2.26) 43.16 (±1.03) 32.76 (±3.79) 51.84 (±3.35)
Mask + OCSVM 55.06 (±1.64) 48.49 (±2.07) 47.63 (±1.73) 43.07 (±6.30) 56.28 (±9.73) 50.46 (±6.55)

MEG† [24] 63.12‡ 56.60‡ 50.28‡ 39.55‡ 26.47‡ 63.08‡

Hide + MEG 60.42 (±7.03) 65.36 (±3.26) 46.51 (±6.51) 69.44 (±3.47) 44.22 (±14.05) 40.12 (±6.54)
Mask + MEG 57.06 (±6.55) 62.17 (±4.67) 51.25 (±3.46) 62.44 (±13.38) 42.36 (±16.82) 40.63 (±12.21)

MADAN [13] 48.80‡ 45.54‡ 67.51‡ 19.49‡ 61.81‡ 73.64‡

Hide + MADAN 57.21 (±9.26) 52.08 (±7.64) 59.09 (±15.03) 49.82 (±15.02) 54.24 (±14.41) 47.47 (±13.33)
Mask + MADAN 58.43 (±8.87) 52.34 (±7.89) 55.98 (±14.07) 48.87 (±12.54) 60.55 (±14.58) 50.20 (±14.13)

PAICAN [2] 67.76‡ 55.38‡ 75.14‡ 73.45‡ 26.94‡ 57.77‡

Hide + PAICAN 68.23 (±1.45) 72.82 (±3.38) 62.73 (±8.14) 71.92 (±1.15) 54.59 (±3.31) 58.65 (±10.07)
Mask + PAICAN 68.90 (±1.15) 61.25 (±3.43) 67.31 (±6.87) 64.76 (±10.82) 45.92 (±8.08) 65.40 (±5.46)

Table 2: The AUC score (in percent) of various anomaly detection methods applied to different datasets. Note that
only Books has a validation set, so the models applied to it are the only ones whose hyperparameters were tuned.
The results on Disney and Enron are based on the hyperparameters that worked well for Books. The two datasets
marked with ∗ do not have a validation set containing anomalies. The two algorithms marked with † do not use the
graph structure in any way. The results marked with ‡ are expected to have a rather large error despite the lack of
known confidence interval.

network composed of two communities of people, where
every person (node) likes either dogs or cats (node fea-
tures). In such a structure, if node v likes cats and is part
of a community where all members like dogs, then v is an
anomalous node. Liking either animal is not anomalous
in itself, neither is being part of either of the two commu-
nities; however the combination of these two properties
would render a node anomalous.

5.1 Thanksgiving Dataset

To test the ability of our methods in detecting joint
anomalies, we create the Thanksgiving dataset. It con-
sists of a graph with two communities generated by the
Stochastic Block Model [17], where a few of the nodes
in each community are joint anomalies (i.e., they are im-
possible to detect from the features alone or from the
graph alone). The name of the dataset comes from the
Thanksgiving dinner tradition, where families (some with
different tastes or political convictions) travel home and
reunite around the same dinner table.

Let G = (V,E) be a Thanksgiving graph with the
set of nodes V = V1 ∪ V2, such that V1 and V2 have
roughly the same size. We define a negligible subset
VA ∈ V of anomalous nodes such that |VA| � |V | and
|VA∩V1| ' |VA∩V2|. Whether any pair of nodes u, v ∈ V
are connected by an edge is prescribed by the Stochas-
tic Block Model [17], that is, the edge (u, v) exists with
probability

p
(
(u, v) is an edge

)
=

{
pin if u, v ∈ V1 or u, v ∈ V2
pout otherwise

.

This creates two separate communities of nodes that are
clearly identifiable in the large graph limit as long as [33]

|V |(pin − pout)2 > 2(pin + pout) . (3)

We next define the features of the nodes indepen-
dently as

Xv[i] =

{
N (0, 1) if v ∈ V1 \ VA or v ∈ V2 ∩ VA
N (µ, σ) otherwise

.

With this formulation, most nodes of V1 have features
with mean 0 and standard deviation 1, and most nodes
of V2 have features with mean µ and standard deviation
σ. At the same time, a few anomalous nodes in V1 have
the features of V2 and vice-versa. A representation of
this dataset can be found in Figure 3.

1Figure 3: An example of the Thanksgiving dataset, with
the anomalies highlighted in yellow. This dataset con-
tains two communities of nodes, each having their own
feature type. The purple and green edges are created
with probability pin while the brown edges are created
with probability pout. Anomalous nodes belong to one
community in terms of graph structure, but have the
features of the other community. In this example, the
rightmost node is anomalous: it is connected to nodes of
the purple community, but has features similar to that
of the green community.
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5.2 Thanksgiving Experiments

We test our models with the Thanksgiving dataset by
independently varying the two main parameters of the
data generation process: the mean µ of the node fea-
ture distribution for normal nodes in V2 (and for anoma-
lies in V1), and the probability pout parameterizing the
number of connections between the two communities
V1 and V2. We compare the results of five algorithms:
OCSVM, HideGNN + OCSVM, MaskGNN + OCSVM,
MADAN [13], and PAICAN [2]. We exclude MEG from
our analysis because MEG, by design, is agnostic to net-
work structure. We keep OCSVM as a trivial baseline to
non-graph based classifiers.

In these experiments, we explore the conditions un-
der which the different algorithms start to fail or succeed,
based on the extent to which a node is anomalous. To
successfully identify the anomalies in the Thanksgiving
dataset, the model must discern (1) which of the two
distributions the features of each node are sampled from,
and (2) which of the two graph communities each node
belongs to. We independently vary the difficulty of these
tasks by changing (1) the difference between the fea-
ture means of the two communities (“easier” for higher µ
when µ > 0), and (2) the difference in edge density within
and across communities (reported in terms of the num-
ber of inter-community connections; higher is “harder”
up to 15, where pin = pout). We are thus less interested
in the absolute performance of the models, and more in-
terested in studying the change in results as the nodes
become more anomalous, both in terms of features and
in terms of connectivity structure.

For our experiments, we generate a set of 100 inde-
pendent Thanksgiving variants for each of the two param-
eters we want to test, and apply the five algorithms listed
above. Each dataset has 1000 nodes, out of which 20 are
anomalous, with each node having 20 features. The ex-
pected number of links between two nodes of the same
community is 15. For the experiments in Figure 4, the
expected number of links between the two nodes across
communities is 5, while the feature mean µ of the sec-
ond community varies across the experiments. For the
experiments in Figure 5, the feature distribution of the
second community is the Normal distribution with mean
µ = 3 and variance σ = 1, while the inter-community
edge probability pout varies across experiments. The
dataset augmentation method used to apply OCSVM to
the outputs of HideGNN and MaskGNN is the difference,
since it gave us the best results in the first phase of the
experiments.

Experimenting with the feature mean. In the fol-
lowing set of experiments, we vary the feature mean
of the second community in Thanksgiving and observe
the performance of the various anomaly detection meth-
ods as the two feature means diverge. When the means
of the communities are almost equal, both communities

have similar features and the anomalous nodes become
almost impossible to detect; as the means diverge, the
joint anomalies become more evident. We start the ex-
periments by setting the feature mean of the second com-
munity to zero (at which point there are no well-defined
anomalies) and increasing its value to 10. Figure 4 sum-
marizes the results of these experiments.

Figure 4: The evolution of the AUC (in percent) of five
algorithms when modifying the mean of the Thanksgiving
dataset. As the feature distribution means diverge,
MaskGNN coupled with a basic classifier (OCSVM)
quickly picks up the performance and beats the other
algorithms, reaching almost an exact categorizations of
the anomalies.

The results show that, when the features of the
two communities are distinct-enough (at around mean
2), MaskGNN coupled with a simple classifier outper-
forms or compares to other methods. PAICAN seems
to do relatively well in the case when the features of
the anomalous and normal nodes are similar, but even-
tually plateaus as the difference between the two means
increases.

Experimenting with the graph structure. Our
second set of experiments explore the effect of varying
the connectivity of the two communities in Thanksgiving.
More precisely, we fix the number of edges inside a single
community, but modify the connections between them,
increasing from an average of 5 edges to 15 (which is the
same as the expected number of edges within each com-
munity). Our goal is to see how the different algorithms
perform when the structure of the graph changes, making
the communities less distinct and more entangled. The
results for these experiments are summarized in Figure 5.
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Figure 5: The evolution of the AUC (in percent) of five
algorithms when modifying the number of connections
between communities of the Thanksgiving dataset. In this
case, our methods combined with the simple OCSVM
always outperform or are comparable to MADAN and
PAICAN. It is interesting to see that there is a strong
change in behaviour around 10, which corresponds to the
community detection threshold for the Stochastic Block
Model [33].

The results of these experiments show that our
models, combined with a simple OCSVM classifier,
are comparable to, or even outperform, MADAN
and PAICAN across all inter-community edge density.
MaskGNN+OCSVM performs the best when the anoma-
lies are clearly identifiable (in the range 5−9). Note that
when the number of connections between the communi-
ties reaches around 15 (i.e. when the expected num-
ber of edges within and across the communities are the
same), then the two communities in Thanksgiving become
unidentifiable and anomalies are no longer well-defined.
It is thus expected that none of the algorithms in Figure 5
is able to correctly identify the nodes labeled anomalous
in the dataset. Another interesting observation to note is
the sudden drop in performance when the expected num-
ber of inter-community edges hits around 10. This, too,
is expected and conforms to the theoretical results: for
the Thanksgiving parameters used in these experiments
(1000 nodes and 15 edges on average inside a commu-
nity), the detection threshold, as defined in Equation (3),
is around 10.

Interpretation. Although the Thanksgiving dataset is
very simple compared to real-life datasets, these experi-
ments give valuable insights on the performance and lim-
itations of HideGNN and MaskGNN when labeled vali-
dation data is limited.

We remark the untapped opportunities for such meth-
ods to augment simple algorithms. Consider OCSVM,
one of the simplest anomaly detection algorithms that is
limited to feature-based anomalies. Combined with one
of our pre-training methods, it becomes a serious con-

tender for predicting graph-based and joint anomalies.
In the case of the Thanksgiving dataset, this improvement
often even surpasses more sophisticated algorithms, such
as MADAN and PAICAN.

We also remark from Figure 4 and 5 that
HideGNN+OCSVM and MaskGNN+OCSVM perform
better in the range of “easier” anomalies (2 − 4 for the
mean and 5 − 7 for the number of connections) and
do not significantly outperform other models when the
anomalies are more subtle. This indicates that the de-
cision to whether or not apply our methods might de-
pend on the ultimate goal motivating the use of an
anomaly detection algorithm. Indeed, if searching for
subtle anomalies, then PAICAN might perform better,
whereas MaskGNN+OCSVM shows stronger results on
Thanksgiving in identifying clear joint anomalies.

6 Conclusion and Further Discus-
sion

Unsupervised anomaly detection remains a difficult prob-
lem to solve. Its challenges lie in the ambiguity (and
often, subjectivity) of what constitutes an anomaly, cou-
pled with the fact that such instances are generally so
rare that enough examples of anomalies are hard to find.
As such, supervised machine learning models are not a
good fit for solving such problems.

In this paper, we explore self-supervised methods
on graph-structured data to learn what normal nodes
look like for a given dataset. In our approaches, the
graph structure defines normality with respect to a local
neighborhood of the sample. The results summarized
in Table 2 and Figures 4 and 5 show that pre-training
on a dataset with either of the self-supervised learn-
ing methods HideGNN and MaskGNN offers promising
results in helping with the anomaly detection task in
graph datasets. With proper tuning of the hyperparam-
eters (the results on Books that are obtained by turn-
ing on a validation set), both our approaches show an
overall superior performance to existing methods. For
joint anomalies, which are specific to graph datasets, our
methods outperform existing baselines when there is a
clear-enough distinction between the distribution of the
features of the anomalies or the community graph struc-
tures. This is true even as our pre-training is combined
with a basic anomaly detection scheme such as OCSVM.

One of the interesting aspects of this work is the way
in which pre-training is combined with other algorithms.
When augmenting datasets with the output of a learn-
ing algorithm, the common practice is to combine the
embeddings (e.g., vectors) learned by the hidden layers
(usually the ones close to the output layer) with exist-
ing features. In this work, we use the prediction (output
layer) of the model to augment the dataset. Our re-
sults reinforce the idea that the reproducing scheme of
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HideGNN and MaskGNN has potential when it comes to
anomaly detection. The results of Figure 4 and 5, com-
bined with the ones in Table 2, show that our models
are powerful at identifying anomalies in various settings,
since most anomalies will have some kind of unexpected
behaviour arising from their features, their connections,
or a combination of both.

Overall, the approach proposed in this work, which
consists of combining a GNN model with hiding or mask-
ing methods, shows promising results and could lead to
further development in the field of structural data. Such
methods could also be used in dynamical structured data
(temporal graphs), or for tasks beyond anomaly detec-
tion, such as node classification or edge prediction.
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[13] Leonardo Gutiérrez-Gómez, Alexandre Bovet, and Jean-
Charles Delvenne. Multi-scale anomaly detection on at-
tributed networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(01):678–685, Apr. 2020.

[14] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive
representation learning on large graphs. In NIPS, 2017.

[15] Ayush Hariharan, Ankit Gupta, and Trisha Pal. Caml-
pad: Cybersecurity autonomous machine learning platform
for anomaly detection. In Future of Information and Com-
munication Conference, pages 705–720. Springer, 2020.

[16] Douglas M Hawkins. Identification of outliers, volume 11.
Springer, 1980.

[17] Paul W Holland, Kathryn Blackmond Laskey, and Samuel
Leinhardt. Stochastic blockmodels: First steps. Social net-
works, 5(2):109–137, 1983.

[18] Luca Invernizzi, Paolo Milani Comparetti, Stefano Ben-
venuti, Christopher Kruegel, Marco Cova, and Giovanni Vi-
gna. Evilseed: A guided approach to finding malicious web
pages. In 2012 IEEE symposium on Security and Privacy,
pages 428–442. IEEE, 2012.

[19] Bernard J Jansen. Click fraud. Computer, 40(7):85–86, 2007.

[20] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang,
Zitao Liu, and Jiliang Tang. Self-supervised learning on
graphs: Deep insights and new direction. arXiv preprint
arXiv:2006.10141, 2020.

[21] P Naga Jyothi, D Rajya Lakshmi, and KVSN Rao. A super-
vised approach for detection of outliers in healthcare claims
data. Journal of Engineering Science & Technology Review,
13(1), 2020.

[22] Thomas N. Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net, 2017.

[23] Nir Kshetri. The economics of click fraud. IEEE Security &
Privacy, 8(3):45–53, 2010.

[24] Rithesh Kumar, Anirudh Goyal, Aaron C. Courville, and
Yoshua Bengio. Maximum entropy generators for energy-
based models. CoRR, abs/1901.08508, 2019.

[25] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and
F Huang. A tutorial on energy-based learning. Predicting
structured data, 1(0), 2006.

10



[26] Kyumin Lee, James Caverlee, and Steve Webb. Uncovering
social spammers: social honeypots+ machine learning. In
Proceedings of the 33rd international ACM SIGIR conference
on Research and development in information retrieval, pages
435–442, 2010.

[27] Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and
Philip S Yu. Graph self-supervised learning: A survey. arXiv
preprint arXiv:2103.00111, 2021.

[28] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M
Voelker. Beyond blacklists: learning to detect malicious web
sites from suspicious urls. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 1245–1254, 2009.

[29] Franco Manessi and Alessandro Rozza. Graph-based neural
network models with multiple self-supervised auxiliary tasks.
Pattern Recognition Letters, 2021.

[30] Jorge Meira, Rui Andrade, Isabel Praça, João Carneiro,
Verónica Bolón-Canedo, Amparo Alonso-Betanzos, and
Goreti Marreiros. Performance evaluation of unsupervised
techniques in cyber-attack anomaly detection. Journal of Am-
bient Intelligence and Humanized Computing, 11(11):4477–
4489, 2020.

[31] Vangelis Metsis and et al. Spam filtering with naive bayes –
which naive bayes? In THIRD CONFERENCE ON EMAIL
AND ANTI-SPAM (CEAS, 2006.

[32] Christopher Morris, Martin Ritzert, Matthias Fey, William L.
Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin
Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First In-
novative Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pages 4602–
4609. AAAI Press, 2019.

[33] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the
block model threshold conjecture. Combinatorica, 38(3):665–
708, 2018.

[34] Emmanuel Müller, Patricia Iglesias Sánchez, Yvonne Mülle,
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