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ABSTRACT
The study of the similarity matrix of a song has been a particularly efficient tech-
nique to characterize song structures. This method transforms a song into a matrix
representing the proximity between its different sections and is usually used to auto-
matically detect structural properties such as its verse, its chorus, its tempo, etc. In
this paper, these matrix representations are used not to study the inherent structure
of a song, but to compare them with each other. This allows to create a metric on
songs related to their pattern matrices, on which statistical tools can be applied.
This metric is used to create groups of songs with similar structures and leads to
interesting observations on patterns commonly used by certain artists, for certain
years, and in certain genres. Moreover, this approach also unveils structures used
across different features, such as songs from different decades and genres. Finally,
this metric on songs is evaluated on classification tasks and shows that its interest
lies in its ability to highlight specific behaviours rather than general trends.
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1. Introduction

The study of the structure of music is an enduring question that has been addressed
in many ways in Music Information Retrieval (MIR) research. A common approach
consists of grouping songs according to some dimension, such as genre and year, before
analysing repetitions and common patterns in their composition [Simms, 1996]. This
technique usually requires an in-depth analysis and annotation of the songs using music
theory; examples of this technique can be found in [de Clercq, 2012, de Clercq, 2017],
with the analysis of the structure of rock songs, in [Epstein, 1986], where the struc-
ture of a specific song is being decomposed, or in [Osborn, 2013], where a general
structure is highlighted and corresponding songs are analysed and given as exam-
ples. An alternative approach is using mathematical models to analyse song struc-
tures [Harkleroad, 2006]. The appeal of mathematical modelling is the potential of
highlighting hidden properties that human-based approaches cannot find [Cope, 2009].

When analysing song structures, a common task is the identification of sections
within a song. These sections can appear at different levels: local short motifs, verse
and chorus, or movements. To solve this task, an early method consists of separating
songs into distinct sections by identifying boundary points [Ullrich et al., 2014]. Since
then, new methods have used unsupervised learning applied on sections at various lev-
els of the songs [Buisson et al., 2022] or combined the identification of sections with
other characterisation tools, such as pre-existing classifications or pre-implemented
auto-tagging models, to extract features of the songs [Salamon et al., 2021,
Wang et al., 2021]. A recent line of work [Wang et al., 2022a, Wang et al., 2022b] has
also been focused on describing the sections of a song by using a time-function which,
for every timestamp of the song, provides one of seven possible categories (intro,
verse, chorus, bridge, outro, instrumental, and silence). We refer to [Nieto et al., 2020]
for a survey on section analysis within songs. Finally, it is worth mentioning the
recent development of a structure extracting method applied to symbolic music
scores [Jiang et al., 2022], where the authors use neural networks to create multi-level
groups (such as singleton, pairs, and quadruplets) of bars and help annotate music
scores.

One common approach to analyse music structure which shows promising results is
to use 2-dimensional similarity matrices to represent songs [Foote, 1999]. This method
is based on transforming a song into a matrix, whose entries correspond to the similar-
ities between the different parts of the song. To compute these matrices, the authors
usually use audio files and transform them into sequences of frequencies; they then
compare the frequencies between the different frames to compute the similarity matrix.
The most common task performed using these matrices is the decomposition of songs
into sections [Bartsch and Wakefield, 2001, Bartsch and Wakefield, 2005, Foote, 1999,
Foote, 2000, Paulus and Klapuri, 2006, Paulus and Klapuri, 2009]; however, they can
also be used to extract information from the song [Foote and Uchihashi, 2001], such
as the tempo, or to distinguish the different signals in the song [Rafii and Pardo, 2011,
Rafii and Pardo, 2012], such as background and foreground voices. Similarity matri-
ces have also recently been used to quickly identify different versions of the same
song [Silva et al., 2018]. It is worth noting that, although [Jiang et al., 2022] studies
the structure of songs using symbolic music scores, and similarity matrices are stan-
dard in the analysis of song structure, the combination of these two ideas has not been
done so far.

Since the method described in this article defines and studies a similarity met-
ric on songs, it is worthwhile to compare it with other song clustering techniques.

2



While there exists a rich literature on defining a measure of similarity for songs,
most of them are based either on a harmonic analysis [Eerola et al., 2001], on
a motive analysis [Cambouropoulos and Widmer, 2000], or a combination of the
two [Pienimäki and Lemström, 2004]. These methods can then be further combined
with efficient melodic analysis tools, but none of them base their similarity distances,
and hence their resulting clusters, on overall song structures.

The study presented in this paper is based on the use of similarity matrices with
two novel approaches. First, songs are analyzed not using a music file, but with a
direct digital notation score of the music, using partitions of the different instruments.
This allows a direct comparison of patterns in the song and could open the door
to more complex analysis, for example by combining our method with other tools
analysing similarities between chords. Second, the resulting similarity matrices are
not used to analyse the structure of a specific song but to make a comparison between
each other, calculating the distance on songs based on their patterns. This allows the
characterization of groups of songs with similar structures and highlights common
patterns which may arise by artist, years, or genres.

In order to conduct a statistical analysis of patterns of songs based on their digital
notation score, a large dataset of songs in that format was required. For this reason,
this article and the code provided hereby also contain a new dataset of 4166 popular
songs in a digital notation score format (GuitarPro format [Guitar Pro, ]), along with
a set of 6 features for each song, further described below. This dataset and some further
information are available on GitHub [Corsini, ].

2-dimensional representation of songs

Consider a song whose structure falls into the typical verse-chorus-verse-chorus-solo-
chorus progression. If comparing the different sections of the song, one could see that
the verses and chorus repeat themselves. Moreover, if possible to quantify the difference
between the sections, one could see that the solo is likely to be more different than the
verses and the chorus. Representing these observations into a 2-dimensional matrix
whose entries correspond to the general similarity between sections, something similar
to Figure 1 would be obtained. Now, this representation is not strongly dependent
on the song in terms of notes, chords, or tempo, but rather on its general structure,
making it a useful tool to compare songs based on their pattern structure.

The previous analysis and example use a rather simple approach to divide a song
into large sub-sections: verse, chorus, solo, etc. By doing a finer level of analysis, one
could hope to highlight these macroscopic behaviours, as well as finer sub-patterns.
Overall, the level at which the analysis is done can greatly influence the appearance of
the results. In this study, since the representation is obtained from standard musical
notation scores, a common subdivision is the bar length. The types of results and
figures obtained in this study are summarized in Figure 2, which transforms the song
Beat It by Michael Jackson into a 2-dimensional matrix where each entry de-
scribes the similarity between the bars of the song. Observe that the diagonal (top-left
to bottom-right) is white since it corresponds to the similarity between the same two
bars.

An important property for representing songs into matrices is that it is possible
to transform abstract objects (songs) into mathematical objects (matrices), for which
standard analysis techniques can be applied. This study uses this observation to define
a distance D on songs based on their pattern structure. This distance is meant to
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Figure 1. A possible depiction of a song with the structure verse-chorus-verse-chorus-solo-chorus. White

means that the two sections are the same, dark means that they are very different, and a scale of blue is

used to interpolate in-between. In most songs, the solo is very different from the rest of the songs, whereas
the difference between the verse and the chorus is not as significant. This representation only depends on the

structure of the song and not on its notes, tempo, or genre.

express the similarity of patterns between different songs. Using D, it becomes possible
to identify groups of songs with similar structures.

Having defined D, this study will next extrapolate the statistical properties of song
patterns. In particular, the following questions will be addressed.

• Given a song feature, such as year, genre or artist, do there exist specific feature
values with a common pattern structure? Given a feature, what are the feature
values with the least variability in pattern structures?
• Given a group of songs with similar patterns, does there exist a corresponding

feature value? Does this group correspond to a specific category of songs?

Finally, this study concludes with an analysis of the ability of D to classify songs
based on their features. In particular, we will see that the results obtained in the pre-
vious section seem to correspond to specific (yet interesting) cases of song similarities,
but that the metric D does not encapsulate further properties of the general feature
space of songs and thus provides poor results on classification tasks. This then con-
firms the goal of this tool and the method developed here: it highlights outliers and
extreme behaviours while being, on average, rather uncorrelated with the features of
the songs.

Methodology

This study aims to better understand the pattern structure of popular music, i.e. songs
that at any point reached the Billboard Hot 100 chart [Billboard, ]. To compute the
pattern matrices, all songs were used in the form of Guitar Pro files, which contain a
wide range of information on the song, such as key signature, chords, tempo, standard
notation scores and tablatures, etc; we provide more details on the transformation
of standard music notations into similarity matrices in Section 2 and we refer to the
official Guitar Pro website [Guitar Pro, ] as well as the Python library used in this
work [Abakumov, ] for more information on the characteristic of the format of files
used here. On top of the Guitar Pro file, each song is defined by 6 features:

(1) artist: the artist of the song.
(2) title: the title of the song.
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Figure 2. The representation of the song Michael Jackson - Beat It and its structure decomposition.
The song can be read in two directions: from left to right or from top to bottom, each square representing

the similarity between two bars (see Section 2 for the precise definition of the matrix and Section 3 for its

re-normalization). Lighter squares correspond to smaller entries in the pattern matrix and darker squares
correspond to larger entries, making the different sections of the song visible from the variation of shades.

(3) year: the first year the song appeared on the chart.
(4) decade: the decade corresponding to the feature year.
(5) genre: the genre(s) of the song.
(6) type: types of genre, obtained from the feature genre.

The reason for considering the year and decade of first appearance on the chart rather
than the actual release date is to focus on the evolution of patterns through popular
taste, rather than when the songs were actually written and produced. The last feature,
type, corresponds to general genres like ‘rock’, ‘pop’, or ‘hip hop’, as well as genre
adjectives, such as ‘experimental’, ‘classical’, or ‘psychedelic’. The full list can be found
in [Corsini, ] in the file dataset/types.json, while the 10 types corresponding to the
most genres can be found in Table A3; this table can give an idea of what the values
of the feature genre and type look like.

Dataset

For this article, a new dataset of 4166 songs in their symbolic music scores format
along with the 6 previously described features was created. The dataset was collected
using the Billboard Hot weekly charts dataset [Miller, ], which includes the first four
features. A program [Corsini, ] went through the songs of this dataset and collected
the available Guitar Pro files online (exploring [Ultimate Guitar, ]). The genre feature
was computed by searching for the song properties on Wikipedia [Wikipedia, ] and
the type feature was generated using the genre feature. For more details on how the
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feature values of type were generated, or about this dataset in general, see Appendix A
or [Corsini, ].

Throughout this process, a lot of automation was used and this dataset may contain
noise from any of the following steps:

• Errors in the original Billboard Hot dataset.
• Wrong song downloaded.
• Bad Guitarpro file: fewer instruments, only partial song coverage, not the original

version, and mistakes in the writing process.
• Mismatched genres.

For each such step, human-based controls were put in place to reduce noise. Among
these steps, the one which was the most difficult to control was the third step, related
to the direct quality of the files. However, this type of noise should only concern a
small portion of songs and will not strongly influence the analysis and the results.

2. The pattern similarity matrix

Let S be a song divided into its ordered sequence of b bars: S = (Bk)1≤k≤b
1. The pat-

tern similarity matrix P (or simply pattern matrix ) is obtained by defining a distance
dbar on bars, used as the entries of P :

Pk,ℓ = dbar(Bk,Bℓ) .

If the song is composed of different instruments, the pattern matrix will be computed
by summing the contributions of the different instruments:

Pk,ℓ =
∑

i∈Ins(S)

dbar
(
B(i)k ,B(i)ℓ

)
,

where Ins (S) is the set of instruments of S and B(i)k is the k-th bar of instrument i.

Distance of similarity on bars

In order to define dbar, bars need to be transformed. The choice of transformation is
to consider them as vectors of size s, where s is the number of time subdivisions in
the bar. In other words, a bar B is defined as a sequence B = (Nt)1≤t≤s where each
element Nt corresponds to the note whose onset is at time t, and s corresponds to the
product of the smallest note length (from the whole song) and the ratio of the bar
time signature. An example of such representation can be found in Figure 3, using the
main riff of Seven Nation Army by White Stripes.

Let B = (Nt)1≤t≤s and B̃ = (Ñt)1≤t≤s be two bars. A definition for dbar is to count

the number of differences between B and B̃:

dbar(B, B̃) =
∑

1≤t≤s

δ(Nt, Ñt) ,

1 It is worth noting that the bar decomposition is not unique; for example, one bar of 4/4 can also be seen

as two bars of 2/4. This could be a problem if the file is poorly written and/or if the songs are composed of

complex meters, but is mostly irrelevant in the case of popular music, usually encoded by a standard 4/4 time
signature.
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Figure 3. The representation of the four bars (B1,B2,B3,B4) into four vectors of size s = 16. This choice

for s follows from the smallest subdivision being a sixteenth note (due to the dotted eighth note) and the bars
having a time signature of 4/4, meaning that there is at most 16× 4/4 = 16 notes in each bar. For each time

t ∈ {1, . . . , 16}, the entry t of the vector corresponds to the onset of the note being played at time t, and is
empty otherwise. A special letter, R, is used for a rest.

where

δ(N , Ñ ) =

 0 if N and Ñ are the same

1 if exactly one of N and Ñ is empty
2 otherwise .

The reason for this definition of dbar and δ is that, each time the onset of a note
is being played in one of the two bars, it adds one to their distance, except if the
same note is being played at the same time in the other bar. From this definition,
dbar(B, B̃) ∈ {0, 1, . . . , 2s}, which implies that the range of dbar is related to the number
of notes per bar.

In the definition of dbar, it is assumed that the two bars have the same size s. This
does not necessarily follow from the previous definition of s, but can be obtained by
normalizing the two bars using the smallest note subdivision and the longest time
signature ratio. With this definition, if the two bars have different time signatures,
then the matrix representation of the bar with a smaller time signature ratio has
empty entries past the last time of the bar. This makes every note played at the end
of the other bar count as one in the distance dbar. We provide an example of the
computation of dbar for two bars with different time signatures in Figure 4.

Figure 4. An example of two bars with different time signatures. If computing dbar for this pair of bars, the

result would be 1 since the first four notes are the same and the last note of the second bar corresponds to a

time which does not exist in the first bar. This choice comes from the fact that longer bars are usually used
to extend a previous pattern (and similarly, shorter bars are usually used to reduce a previous pattern). This

choice, however, does not have a significant effect on the results since most of the songs considered here have

a classical 4/4 time signatures.

To further illustrate how dbar is computed, we provide in Appendix B a few special
cases: when the two bars have different time signatures, how rests are dealt with, and
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how chords are compared to each other. It is worth noting that the definition of dbar
does not depend on s, provided s is large enough to allow B and B̃ to be properly
defined (the onset of each note in B and B̃ corresponds to an exact index between
1 and s). Using this remark, when computing the pattern matrix, the same s will
actually be used for all bars of the song.

With dbar being defined for any pair of bars, the pattern matrix P of any song
can now be computed. As an example, the pattern matrix of the main riff of Seven
Nation Army, whose vector representation was given in Figure 3, can be found in
Figure 5. For the rest of the paper, this exact definition of dbar is used to compute
the pattern matrix of a song. It is worth mentioning however that the images found in
Section 4 as well as that of Figure 2 are all re-normalized using ν (defined in Section 3)
for clarity.

Figure 5. A representation of the entries of the pattern matrix of the main riff of Seven Nation Army by
White Stripes. For each row, the first column gives the indices of the two bars being compared, the second

column gives the distance between these two bars, the third column gives the two vector representations of

the bars obtained in Figure 3, and the last column gives the original music sheet used to compute the pattern
matrix. The notes highlighted in yellow in the third and fourth columns correspond to the differences between

the two bars and each yellow square counts as one in the distance of the two bars. From this figure, one can

see that the corresponding pattern matrix is given by


0 8 0 10
8 0 8 2

0 8 0 10

10 2 10 0

.

3. Comparing songs

With the pattern matrix of a song defined in Section 2, a distance on pattern matrices
can now be computed in order to obtain D, the distance on song structures. This
section focuses on the definition of D.

Directly comparing pattern matrices presents a few problems. First of all, they do
not necessarily all have the same shape, as P has size b×b, where b is the number of bars
of the song. Second, recall that the entries in these matrices are related to the number
of notes being played, implying that they can greatly vary between songs. Finally, this
link between entries of the pattern matrix and the number of notes played can also
create high variability of entries inside a single song, for example, if a sub-section has
a much higher density of notes (such as a solo, see Figure 1).
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For the rest of this section, the goal is to define the function

ν : P ∈ Nb×b 7−→ ν(P ) ∈ [0, 1]s0×s0

used to normalize pattern matrices so that they can be easily compared with each
other. Here, s0 is a constant over all songs and ν(P ) is a normalized pattern matrix
and should reflect the pattern structure of P while avoiding the previously raised
issues. With ν being defined, the distance over songs D is set as

D(S1,S2) =
∥∥ν(P1)− ν(P2))

∥∥
p
, (1)

where P1 and P2 are the pattern matrices of S1 and S2. Here, ∥·∥p is defined as the aver-

age Lp norm; that is, for all A of size s0×s0, we have ∥A∥p =
(

1
s20

∑
1≤k,ℓ≤s0

|Ak,ℓ|p
)1/p

.

The value of p is implied in the definition of D and set to p = 2 for the rest of this
study.

It is worth noting that D is actually not a proper metric on the set of songs, but
rather a pseudometric: it satisfies all the axioms of a metric except that we might have
D(S1,S2) = 0 for two distinct songs S1 ̸= S2. This property comes from the fact that
the pattern matrices of two distinct songs could be the same and that ν is likely not
injective (consider the case s0 = 2 for example). The norm ∥ · ∥p on [0, 1]s0×s0 however
corresponds to a proper metric space.

Pattern matrix normalization

Let P be a pattern matrix of size b × b whose entries take values in N. In order
to visualize the impact of the different modifications made on P by the normalizing
function ν, matrices are depicted as in Figure 2: a white square corresponds to a 0 in
the matrix, whereas a black square corresponds to the maximal possible entry, and a
scale of blue is used to interpolate values in-between.

As explained earlier, the entries of P are related to the number of notes being
played, which means that these entries can greatly vary between songs. In order to
avoid scaling problems when comparing two pattern matrices, their entries have to be
taking values in [0, 1]. The importance of this constraint is represented in Figure 6,
where the two songs represented have similar structures but different ranges of entries
in their pattern matrices.

The problem of large entries in pattern matrices does not simply affect comparing
two different songs, but can also prevent the matrix of a given song from clearly
highlighting its structure. For example, a song with a section denser than the other
ones will have very high entries in specific rows and columns of its pattern matrix,
making the rest of the entries small in comparison; and this could hide possible sub-
patterns of the song. To avoid this issue, the variation of the entries in P is normalized
by using the corresponding percentile index rather than the exact value 2.

Write P⃗ = (Pki,ℓi)1≤i≤b2 for the sequence of ordered entries of P ; in other words,
(ki, ℓi) ̸= (kj , ℓj) for i ̸= j, and Pki,ℓi ≤ Pki+1,ℓi+1

. Let qα = Pk⌊αb2⌋,ℓ⌊αb2⌋
be the α

quantile of P⃗ and pj = qj/100 be the j-th percentile of P⃗ . The percentile normalization

2 The reason for choosing the percentile index instead of a more common activation function, such as softmax

or softmin, comes from the desire to completely remove the bias created by large entries in the matrix, instead

of just reducing it.
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Figure 6. Comparison of the songs Jonas Brothers - Lovebug and Metallica - One before and after
normalizing their entries between 0 and 1. Each column represents the two pattern matrices on the same scale

of blue; the left column corresponds to the original pattern matrices, whereas the right column corresponds
to the pattern matrices whose entries have been scaled between 0 and 1. As can be observed from the right

column, these two songs have a similar structure. However, if only comparing the values of the two pattern

matrices (left column), the entries of the matrix of the Metallica song are much larger than the entries of the
matrix of the Jonas Brothers song.

function νp is defined as

νp : P 7−→
(

max{j : pj ≤ Pk,ℓ}
)
1≤k,ℓ≤b

,

and replaces the entries of P by their corresponding percentile index. An example of
the importance of applying νp can be found in Figure 7.

After applying νp to a pattern matrix P , the maximal entry is always 100, corre-
sponding to the maximal entries of P . However, the minimal entry might not be 0, for
example if there are many 0 in P . In order to avoid this issue, a second normalizing
function ν0 is applied, forcing the entries of the matrix to take values in [0, 1], with 0
and 1 included. More precisely ν0 is defined as

ν0 : P̃ 7−→ 1

100−min{P̃}
(
P̃ −min{P̃}

)
,

where {P̃} = {P̃k,ℓ, 1 ≤ k, ℓ ≤ b}. Here, P̃ is used instead of P to highlight the fact
that ν0 is supposed to be applied to the image of P through νp and not directly to the

pattern matrix P . The effect of ν0 on P̃ is depicted in Figure 8. The changes operated
by ν0 are not meant to have a strong impact on the whole process, but give a desired
property for the resulting matrix: bars which are the same correspond to entries with
value 0, and bars with most differences correspond to entries with value 1.

When applying νp and then ν0 to a pattern matrix P , it is transformed into a
matrix of size b× b whose entries take values in [0, 1]. Moreover, the resulting matrix
clearly represents the structure of the original song, meaning that it can be used to
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Figure 7. Comparison of the songs Guns N’ Roses - Sweet Child O’ Mine and Dire Straits - Sultans
of Swing with and without applying νp to their pattern matrices. The left column corresponds to the original

pattern matrix and the right column corresponds to its image through νp. As can be observed from the left
column, a few bars with high distance to the rest of the song tend to make the overall picture uniformly blue,

making both of these pattern matrices look similar. However, after applying νp, different patterns appear more

clearly, showing the diversity in structure of these two songs. This figure also represents the importance of νp
when representing patterns of songs, since it highlights their patterns.

compare the structure of different songs. Before being completely able to compare
songs according to their pattern matrices, it remains to address the variety in sizes b
of the matrices. Since b corresponds to the number of bars of the song, it is most likely
different from one song to the other.

Resizing matrices

Consider two normalized pattern matrices P̃ and Q̃ of respective sizes b× b and d× d,
obtained as the image of two pattern matrices through ν0 · νp. A straightforward way

to compare P̃ and Q̃ in spite of their respective sizes is to extend them by repeating
each of their entry multiple times. More precisely, P̃ and Q̃ are transformed using σ,
defined as follows

σ : (P̃ , Q̃) 7−→
((

P̃⌈k/d⌉,⌈ℓ/d⌉
)
1≤k,ℓ≤bd

,
(
Q̃⌈k/b⌉,⌈ℓ/b⌉

)
1≤k,ℓ≤bd

)
.

The image of (P̃ , Q̃) through σ is a pair of matrices, whose sizes are both bd× bd, and
whose entries are related to the entries of P̃ and Q̃ repeated multiple times: d2 times
for the entries of P̃ and b2 for the entries of Q̃. Using σ, let the true distance dtrue of
P̃ and Q̃ be defined by

dtrue(P̃ , Q̃) =
∥∥P̃ σ − Q̃σ

∥∥
p
,

where (P̃ σ, Q̃σ) = σ(P̃ , Q̃). Note that this distance also corresponds to a graphon-
like approach [Lovász and Szegedy, 2006]. Indeed, if P̃ and Q̃ are transformed into
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Figure 8. Comparison of νp(P ) and ν0(νp(P )) for the pattern matrix P of the song Michael Jackson -

Smooth Criminal. The main difference between these two pictures is that the lightest colour on the left image

is not exactly white, meaning that the smallest entries of the matrix are not exactly 0. Even though ν0 does
not greatly modify the matrix, the patterns appear slightly clearer on the right.

functions f P̃ , f Q̃ : [0, 1]2 7→ [0, 1] such that f P̃ (x, y) = P̃⌈xb⌉,⌈yb⌉ and f Q̃(x, y) =

Q̃⌈xd⌉,⌈yd⌉, then dtrue is equal to their integral Lp distance

dtrue(P̃ , Q̃) =

(∫∫
(x,y)∈[0,1]2

∣∣∣f P̃ (x, y)− f Q̃(x, y)
∣∣∣pdxdy) 1

p

. (2)

This approach reinforces the idea that this should be the true distance between pattern
matrices.

The function dtrue, although perfectly adapted to compute the distance between
normalized pattern matrices, is not computationally feasible since it requires to use
matrices of size bd× bd; even if replacing bd by the lowest common multiple of b and
d, the computation time is unrealistic (see the first column of Table 1). To avoid this
computational problem, an approximation of dtrue is used.

Fix an integer s0 ≥ 1 and let νs0 be defined as follows

νs0 : P̃ 7−→
(
P̃⌈bk/s0⌉,⌈bℓ/s0⌉

)
1≤k,ℓ≤s0

.

This function, similar to σ, creates a matrix of size s0×s0 whose entries are related to
the entries of P̃ . However, since s0 might not be a multiple of b, the number of times
each entry of P̃ is repeated in νs0(P̃ ) is not necessarily constant, creating a small error
in the representation of P̃ . Define now ds0 by

ds0(P̃ , Q̃) =
∥∥νs0(P̃ )− νs0(Q̃)

∥∥
p
.

Since νs0(P̃ ) slightly modifies the role of the entries of the matrix P̃ , the distance
ds0 is not necessarily going to be equal to dtrue. However, for any pair of matrices P̃
and Q̃, the distance ds0(P̃ , Q̃) converges to dtrue(P̃ , Q̃) as s0 increases to infinity; if
considering the integral definition of dtrue as in (2), ds0 actually corresponds to the
Riemann approximation of ds0 using squares of size 1

s0
× 1

s0
.

Computing ds0 requires using matrices of size s0 × s0. This means that the smaller
s0 is, the faster the computation will be. Hence, it is interesting to choose a value for
s0 that balances between the computational time of ds0 and the accuracy compared to
the true distance dtrue. Table 1 gives an approximation of the computational time and
the accuracy for different values of s0. From this table, any s0 larger than 100 is an
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appropriate choice since the error rate is less than 1%. For the rest of this study, s0 is
set to be 500, corresponding to an error rate as small as computation time reasonably
allows.

distance dtrue d100 d200 d500 d1000 d2000

error 0% 0.99% 0.50% 0.20% 0.10% 0.05%

time (ms) 6318 0.89 2.43 13.5 43.0 164

Table 1. Comparison of dtrue with ds0 for s0 ∈ {100, 200, 500, 1000, 2000}. For a given distance ds0 , its error

corresponds to the average error rate between dtrue(P̃ , Q̃) and ds0 (P̃ , Q̃) (where the error rate between a and

b is defined as |a− b|/|a|). For each distance d, its time corresponds to the average time to compute d(P̃ , Q̃).
All these results were approximated by randomly choosing 400 pairs of songs from the dataset and averaging

their error rate and time to compute.

To conclude this section, ν is set to be the combination of the different normalization
functions:

ν : P 7−→ ν500(ν0(νp(P ))) .

In other words, the image of a pattern matrix P through ν corresponds to transform-
ing P using its percentiles (see Figure 7), then forcing its values to span 0 and 1 (see
Figure 8), and finally resizing it to 500×500. Using the image of ν as a normalized pat-
tern matrix, the pattern structure of songs can be compared by defining the similarity
distance on songs D as in (1).

4. Results

With the pattern matrix being defined in Section 2 and the distance D set in Section 3,
songs can now be compared according to their pattern structures. In this section, the
values given by D are combined with the features of the songs (defined in Section 1)
to answer the previously asked questions:

• Given specific feature values, what can we say about the pattern structures?
• Given similar pattern structures, do they have corresponding feature values?

To answer these questions, two scores are defined on groups of songs: the pattern
variability score (VP score) and the feature variability score (VF score).

Let G = {S1, . . . ,Sk} be a group of songs. The VP score of G is defined as the
average distance between any pair of songs of G:

VP = ES̸=S̃∈G
[
D(S, S̃)

]
=

1

k(k − 1)

∑
1≤i,j≤k

D(Si,Sj) .

This score should be interpreted as the amount of variability between the patterns of
the songs of this group: groups with a small VP score correspond to a set of songs
whose patterns are similar 3.

Given this same group of songs G = {S1, . . . ,Sk}, let f1, . . . , fk be their feature
values, corresponding to the feature F taken from the possible choices of features:

3 An easy way to better understand the VP score is by comparing the results of Figure 10 with that of
Figure C1; indeed, the lowest scores in Figure C1 all correspond to covers of the same song and are thus lower

than the lowest scores in Figure 10.
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artist, title, year, decade, genre, or type. The VF score of G (with regards to
F) is defined in one of the following two ways. If f1, . . . , fk are real numbers (meaning
that F ∈ {year, decade}), then the VF score is the standard deviation of the values
f1, . . . , fk:

VF =

√
1

k

∑
1≤i≤k

(fi − µ)2 ,

where µ = 1
k

∑
1≤i≤k fi. Otherwise, if f1, . . . , fk are not real numbers, then the VF

score is defined as the average of the counting process of f1, . . . , fk. More precisely, let
(c1, f̃1), . . . , (cℓ, f̃ℓ) be such that cj = #{i : fi = f̃j}, c1 ≥ . . . ≥ cℓ and {f1, . . . , fk} =

{f̃1 ̸= . . . ̸= f̃ℓ}. Then, the VF score is defined as

VF =
1

c1 + . . . + cℓ

∑
1≤j≤ℓ

jcj .

This choice of score can be seen as transforming f1, . . . , fn into a set of probabilities
{p1, . . . , pℓ}, where ℓ is the number of different feature values in {f1, . . . , fn} and pj
is the probability of having the j-th most common feature value when sampling a
random fi. With this approach, VF then corresponds to the average popularity of the
chosen index. For example, imagine having a group of 10 songs, and consider the three
following cases along with their VF scores.

• All songs have the same feature value; in that case ℓ = 1 and c1 = 10, leading
to VF = 1.
• The songs take two possible feature values, separated into two groups of equal

sizes; in that case ℓ = 2 and (c1, c2) = (5, 5), leading to VF = 1.5.
• All songs have different feature values; in that case ℓ = 10 and ci = 1 for all

i ∈ {1, . . . , 10}, leading to VF = 5.5.

In both cases whether f1, . . . , fk are real numbers or not, the VF score should be
interpreted as the amount of variability between the feature values of the songs of this
group: groups with a small VF score correspond to a set of songs with a lot of similar
features.

With the VP and the VF scores defined, the rest of this section is organized as fol-
lows. Section 4.1 uses a feature-based approach and studies the VP score when grouping
songs according to their feature values. For each feature, this allows a ranking of the
feature values according to their variability of patterns. Sections 4.2 and 4.3 create
groups of songs according to the distance D and study the VF score of these groups.
Section 4.2 uses a cluster-based approach and partitions songs into clusters, whereas
Section 4.3 uses a neighbour-based approach and focuses on each song’s nearest neigh-
bours. These two approaches give similar results and are both efficient in finding
underlying properties of features not observable with the approach of Section 4.1. Fi-
nally, some extra figures completing those presented in the following sections can be
found in Appendix C

4.1. Pattern variability on features (feature-based approach)

Consider the different features of a song: artist, title, year, decade, genre and
type. Each of these features has a set of possible values it can take; for example, all
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songs of the dataset in this study appeared in the chart for the first time between
1958 and 2019. Now, for each feature value, all corresponding songs can be grouped
together and their VP score can be computed. For example, the first 20 lowest VP
scores for the feature year are represented in Figure 9.

Figure 9. The year 1958 to 2019 ordered according to their VP score (only the first 20 lowest ones are

depicted here). The blue dots correspond to the VP scores, which are obtained by computing the average

distance between songs from a given year. The blue bars show the standard deviation around this average
distance. The bars in red represent the number of songs who appeared for the first time the corresponding

year. No year has a notably lower score than the next one, but this computation gives a ranking on years

according to their variability in pattern structure.

The VP score of each feature value is a clear and easy-to-interpret metric. However,
this score is difficult to combine with the actual pattern matrices, since it reflects a
general trend rather than the existence of a unique pattern structure. Indeed, when the
number of songs for each feature value is large, then the number of pattern structures
tends to be large as well. Figure 10 illustrates this principle by representing the artists
with at least 2, 5 and 10 songs and with minimal VP score. From this figure, one can
see that, as the number of songs considered increases, the number of pattern structures
also increases.

A possible explanation for the limited interpretation of VP , is that it only focuses on
the average distance between a given group of songs G. As explained, this means that,
as the size of the group increases, the average distance will converge to a standardized
distance. Even without a group of large size, issues of interpretation can appear. For
example, it is possible for G to be composed of songs having one of two distinct pattern
structures; in this case, even though the pattern variability of G would be limited, since
patterns of songs in G could be explained by only two types of pictures, the VP score
of G would be high, because the average distance would be related to the distance
between the two distinct patterns. In order to avoid such issues, Sections 4.2 and
4.3 focus on studying the variability in features from groups of songs with similar
patterns, rather than considering all songs with the same feature value. These two
sections give a better understanding of the structural properties of songs and their
relation to features.
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Figure 10. The artists with lowest VP score according to different threshold on their minimal number of

songs. On the left, three figures correspond to the first 20 scores for the feature artist, where the minimal
number of songs is set to 2, 5 and 10. On the right, all the normalized pattern matrices of each artist with

lowest score. As the number of songs for each feature value increases, so does the variety of patterns, making

it more difficult to explain the low score with the pattern matrices.

The VP score is limited in its interpretation and might miss interesting underlying
properties of the relation between features and patterns. However, this score is a natu-
ral approach to studying pattern variability in songs and it gives a metric allowing the
direct ranking of feature values. It might require some modification and improvement
(see Section 6 for further ideas), but could be used as an interesting metric to study
the evolution of variability through years, genres, or artists (see Appendix C for the
complete set of figures regarding the VP score).

4.2. Feature variability on clusters (cluster-based approach)

After considering each feature independently and giving a score for each feature value
according to pattern variability, this section applies first the distance on song D to cre-
ate clusters. Once these clusters are identified, their VF score is computed, highlighting
clusters with repeating feature values.

Since clusters can greatly vary according to the method used, three common clus-
tering algorithms were implemented:
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• Spectral Clustering [Ng et al., 2001];
• K-Medians [Park and Jun, 2009]; and
• Agglomerative Clustering [Ward Jr, 1963].

The choice of algorithms was motivated by two constraints. First, these algorithms
can be directly applied to a pre-computed distance matrix obtained from D, and
do not need to access the embedding space of the songs; this first reason explains
why K-Medians was chosen over the more classical K-Means. Second, the number of
output clusters is determined by a number given as input; this second reason explains
why the classical DBSCAN algorithm is not used here. With these two constraints,
Spectral Clustering and K-Medians are standard algorithms. The reason for using
Agglomerative Clustering is that it fits the songs into a tree-like structure, which is a
good way to interpret song patterns (see Figure 11). For this last reason, Agglomerative
Clustering gives the best results and all further analysis in this section was obtained
using this algorithm (see Appendix C for some results on Spectral Clustering and
K-Medians).

Figure 11. A representation of the tree-like structure of song patterns. This graph was obtained by connecting
songs with their nearest neighbours. From this figure, one can observe that all of the above songs fall into the
category of songs with a high outro, represented by darker bands at the bottom and at the right of the figures.
From this general pattern structure category, sub-types of patterns can be observed and the connections between
these patterns create a tree-like structure.

Since the dataset contains a large number of songs (4166 in total, see Appendix A),
and the size of the clusters should be limited for interpretative reasons, a recursive
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approach was used. The actual clustering algorithm is described in Algorithm 1 and is
based on applying one of Agglomerative Clustering, Spectral Clustering, or K-Medians
recursively, to reduce the clusters to a desirable size. The results that follow are all
obtained by using Agglomerative Clustering (with nc = 2 output clusters), no limit on
the maximal number of iterations (mi = |G|), and clusters of size at most 15 (ms = 15).

Algorithm 1: Recursive clustering algorithm

input : A group of songs G and a metric D
output : A cluster partition C = {C1, . . . , Ck} of G
params:
• AC , a clustering algorithm, with a given number nc of output clusters
• ms, the maximal size of a cluster
• mi, the maximal number of iterations

begin
C ← {G}
for i← 1 to mi do
Caux ← ∅
for C ∈ C do

if |C| > ms then
Caux ← Caux ∪ AC(C,D)

/* AC(C,D) partitions C in nc clusters using D */

else
Caux ← Caux ∪ {C}

end

end
C ← Caux

end
return C

end

Once Algorithm 1 is applied to the set of songs, a similar approach to Section 4.1
is used and clusters are ranked according to their VF score. A typical outcome of this
algorithm can be found in Figure 12, where clusters are ordered according to their
VF score with regards to the feature year. Once this figure is obtained, it needs to be
combined with an analysis of the clusters; the cluster with the lowest score in Figure 12
is represented in Figure 13.

Our interest in using clusters instead of the feature-based approach of Section 4.1
can be understood by considering the results of Figure 12. Indeed, the feature-based
approach considers every feature value independently of each other and then ranks
them according to their VP score. However, in the case of the feature year, for example,
feature values can be compared with each other and a notion of proximity can be
defined. Using this property, the cluster represented in Figure 13 can be found, where
the pattern clearly corresponds to songs around the year 2010. This could not have
been unveiled by the feature-based approach in Section 4.1 since it does not compare
songs that have different but similar feature values.

The reason for using the cluster-based approach over the feature-based approach is
not limited to the notion of proximity on the feature year. As explained in Section 4.1,
a possible limitation of the VP score is that it is not able to detect groups of songs that
would be generated from a couple of distinct pattern structures. Clustering methods,
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Figure 12. Clusters ordered according to their VF score with regards to the feature year (only depicting the

20 lowest scores). The blue dots represent the average year of the cluster, the blue bars represent the standard
deviation around this year and the red bars represent the sizes of the clusters. This figure needs to be combined

with a representation of the clusters in order to appreciate its results. The cluster with the lowest score is

represented in Figure 13.

Figure 13. A representation of the cluster with lowest VF score as found in Figure 12. As one can see, all

songs show a similar pattern and have been released around the same years. Since this cluster was obtained by

grouping songs according to their pattern similarities, it also means that this specific pattern is characteristic
of the end of the 2000’s.

however, are able to separate songs according to pattern similarity and then identify
groups with repeated feature values. An example of the power of clusters in identifying
sub-groups of patterns inside a given feature value is represented in Figure 14, where
the artist Linkin Park shows two commonly used structures. The reason this artist
did not appear clearly in the results of Figure 10 is due to the two limitations of the
VP score explained in Section 4.1: this artist has a lot of songs and a combination of
different but repeated pattern structures.

Using the VF score on clusters shows more promising results than using the VP score
on songs grouped by their feature values, since it is able to highlight finer properties
of song patterns. One reason for this improvement is that the cluster-based approach
is able to ignore noisy or out of distribution songs and only focuses on groups with
similar structures. This leads to a better ability to identify specific pattern structures
related to years (Figure 13) or artists (Figure 14). A few figures showing what happens
when considering the features genre and type can be found in Appendix C.
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Figure 14. A representation of all the pattern matrices of the artist Linkin Park. The top two groups each
correspond to a specific type of pattern and the bottom group contains the rest of the songs. This grouping

shows that the artist Linkin Park commonly uses one of the two top structures. This property is highlighted

by clusters but was missed when considering the VP score on the artist as shown in Figure 10. Two reasons
can explain why this artist does not have a low VP score: the large number of songs it has in the dataset, and

the fact that they mostly correspond to one of two distinct pattern structures.

4.3. Feature variability on neighbourhoods (neighbour-based approach)

The cluster-based approach used in Section 4.2 is useful since it creates a partition of
the songs into groups. This approach also implies that groups with low VF scores can
be interpreted as patterns characteristic of the given feature value (as explained in
Figure 13). However, another possible approach to grouping songs is to consider the
set of nearest neighbours for each song.

For each song in the dataset, using the distance D it is possible to identify its
neighbourhood, hence creating groups of songs with a centre. With this approach,
some songs might appear in more neighbourhoods than others. This remark implies
that neighbourhoods cannot be interpreted as characteristic groups, as was the case
with clusters; however, this technique allows the definition of a centre song, opening
more possibilities with the analysis of features.

Consider computing the 20 nearest neighbours of all the songs. For each of these
neighbourhoods, the corresponding VF score can be computed as in Section 4.2. Fur-
thermore, since neighbourhoods have a centre song, it is now possible to compare the
feature of the centre with its neighbours. By applying this idea to the neighbourhoods
ordered according to their VF score with regards to the feature year, Figure 15 is
obtained and compares the neighbours and the centre song years of first appearance
in the chart.

An interesting analysis of the feature year, made possible by neighbourhoods, can
be done by classifying song patterns as early, late or on-time (see Figure 15). By
considering neighbourhoods with the lowest VF with regards to the feature year,
meaning neighbourhoods with the lowest year standard deviation, and comparing the
average year of the neighbourhood to the year of the centre song, three behaviours
can be identified. Songs can either have pattern structures similar to songs appearing
later in the chart, meaning that this pattern was ahead of its time. Similarly, songs
can have pattern structures that were commonly used in earlier years, meaning that
they could have been inspired by previously released songs. Finally, songs can have
pattern structures similar to other songs of the same year. In this last case, it is
possible that the cluster-based approach of Section 4.2 would have already identified
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Figure 15. Neighbourhoods ordered according to their VF score with regards to the feature year. The blue

dots, blue bars, and red bars respectively represent the average year, the deviation around this average year,
and the average distance between songs of the neighbourhoods. The yellow star represents the year of the centre

song. This approach allows the identification of songs with early use of patterns (such as the first song, Heart

- If Looks Could Kill), late use of patterns (such as the second song, Sia - The Greatest), or on-time use
of patterns (such as the third song, JoJo - Leave (Get Out)). A few neighbours of Heart - If Looks Could

Kill are represented in Figure 16.

this relation between pattern and years, whereas the first two cases would tend to
be hidden when studying the VF score of the clusters. Two interesting examples of a
song with early and late pattern structures can be found in Figures 16 and 17, where
both the features year and genre have interesting behaviours. Indeed, in the case of
Figure 16, the pattern is later borrowed by the neighbours of the Heart song and can
be interpreted as a revival of the original song style, whereas in the case of Figure 17,
the strong difference in both years and genre shows the originality of the structure of
the The Chainsmokers song.

Overall, the cluster-based approach of Section 4.2 and the neighbour-based ap-
proach of this section give similar and complementary results. While the cluster-based
approach highlights characteristic patterns corresponding to feature values, the neigh-
bourhood approach can be used to find outliers in pattern structures by showing songs
whose features are unrelated to those of their neighbours. These two techniques can
also be combined to help understand the general structure of the song patterns. Indeed,
by comparing clusters and neighbourhoods, one can observe a possible tree-like struc-
ture for song patterns, as highlighted in Figure 11. This might also explain why the
Agglomerative Clustering algorithm shows better results than the two other clustering
techniques considered.

5. Evaluation

In order to complete this study, we evaluate the ability of the metric D to classify songs.
More precisely, we implement various classical regression and classification algorithms
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Figure 16. The representation of the song Heart - If Looks Could Kill, as well as a few chosen neighbours.
As it appears from this figure, the pattern shown by Heart - If Looks Could Kill is borrowed by songs

released years later. Moreover, it is interesting to notice that the songs represented below all fall under some

genre related to rock and could thus be interpreted as a revival of the original hard rock structure found in the
Heart song.

Figure 17. The representation of the song The Chainsmokers - Don’t Let Me Down, as well as a few

chosen neighbours. As it appears from this figure, the pattern shown by The Chainsmokers - Don’t Let
Me Down is taken from an early period. Moreover, when comparing the genre of these different songs, it also

appears as The Chainsmokers - Don’t Let Me Down does not fit the genres of its neighbours. This is an

interesting example of song whose patterns is borrowed from another period of time and style of music.

to test whether D can be used to predict the features year, decade, artist, genre,
and type.

The problem we are trying to solve can be formally stated as follows. First of all,
we have a set of songs G which we divide into two sets: Gtrain for the train set and Gtest
for the test set. In our case, we randomly split G so that |Gtrain| ≃ 4|Gtest|, meaning
that the train set is 80% of the dataset and the test set corresponds to the remaining
20%. Second, we have a distance D defined on G and, for each song S ∈ G, we have
a feature fS (we later explain how the different formats of features are handled). Our
goal is to define a classification function φ( · | Gtrain, D) which is constructed using
(Gtrain, D) and so that

φ(S | Gtrain, D) ≃ fS .

The meaning of the ≃ will be later clarified, but should be understood as φ cor-
rectly classifies S as having the feature fS . We now describe the different algorithms
considered to define φ.

All of the regression and classification algorithms considered here come from the
scikit-learn [Pedregosa et al., 2011] library in Python. In particular, we use the follow-
ing algorithms.
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• LinearRegression (LR), from the linear model module, computing a simple
linear regression;
• KNeighborsRegressor (KNR) and KNeighborsClassifier (KNC), from the
neighbors module, computing a nearest neighbour regression and classification;
• SVR (SVR) and SVC (SVC), from the svm module, computing a support vector

regression and classification;
• GaussianNB (GNB) and BernoulliNB (BNB), from the naive bayes module,

computing two types of naive Bayes’ estimations; and
• DecisionTreeRegressor (DTR) and DecisionTreeClassifier (DTC), from

the tree module, computing a decision tree regression and classification.

We further test two versions of the nearest neighbour regression and classification,
using either 10 neighbours (10NR and 10NC) or 20 neighbours (20NR and 20NC).
The other parameters of the models were unchanged from their defaults features.

Note that only four of the aforementioned algorithms allow the input to be a pre-
computed distance: SVR, SVC, KNR, and KNC. For the other five, we decided to
emulate a vector space by splitting the train set Gtrain using a basis of songs. Let
Gbasis ⊆ Gtrain be a random subset of the training set. Then, we embed the remaining
set of songs G \Gbasis along with the distance D as a vector space of dimension |Gbasis|
by saying that the coordinates of S ∈ G \ Gbasis are given by (D(S,Sb))Sb∈Gbasis

. This
thus allows us to apply the remaining algorithms, LR, GNB, BNB, DTR, and DTC,
to this vector space. For the rest of this study, we set Gbasis so that it corresponds to
approximately 5% of the songs of the train set, chosen at random 4.

Since we want to test different formats for the features, numerical for year and
decade, categorical for artist, and multi-categorical for genre and type, we need to
set up different evaluation methods. In the case of numerical values, that is when fS
and φ both output numbers, we implement the two metrics

AVG =
1

|Gtest|
∑

S∈Gtest

∣∣∣fS − φ(S | Gtrain, ds)
∣∣∣ ,

for the average error in classification, and

SUCC =
1

|Gtest|
∑

S∈Gtest

δ0

(
fS − φ(S | Gtrain, ds)

)
,

where δ0(x) = 1 if and only if x = 0, for the number of successes. It is worth noting
that a good classification algorithm should output a low AVG and a high SUCC (in
percentage). Running the previous algorithms on our dataset leads to Table 2.

As we can see in Table 2, the results show that D is not a good metric for char-
acterizing the year or decade of a song. Indeed, on average it misclassifies the song
by at least 10 years and does not classify songs substantially better than a simple
random classification. We now provide the results for categorical feature values, that
is for the feature artist. In this case, regression algorithms cannot be applied and the
AVG score defined before is not properly defined anymore. However, the SUCC score
still makes sense in this context and we thus provide the results of the classification
algorithm on the feature artist in Table 3.

4 Some extra experiments were implemented using different percentages of the train set for the basis set but

mostly provided similar results and we thus decided not to include them for clarity.
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year decade

AVG SUCC AVG SUCC

LR† 12.04 1.92% 12.24 22.18%
10NR∗† 12.81 1.80% 13.03 19.54%

10NC∗ 17.09 2.76% 14.46 24.94%

20NR∗† 12.72 1.32% 12.92 19.90%
20NC∗ 14.72 3.36% 13.84 25.54%

SVR∗† 15.59 1.92% 15.82 18.35%
SVC∗ 19.36 2.76% 19.47 12.71%
GNB 18.19 2.28% 17.94 18.11%

BNB 19.30 3.00% 17.10 20.50%
DTR† 17.27 2.40% 16.47 20.62%
DTC 17.51 2.64% 16.75 21.46%

Table 2. The classification results for the two numerical features, year and decade. The algorithms marked

with ∗ directly use D as metric while the other ones use the basis set Gbasis to transform the dataset into a
vector space. The algorithms marked with † are regression algorithms, while the other ones are classification

algorithms. As one would expect, the results between the features year and decade are strongly correlated.

artist

10NC∗ 0.24%

20NC∗ 0.12%
SVC∗ 0.48%

GNB 0.84%

BNB 1.08%
DTC 0.00%

Table 3. The classification results for the categorical feature artist with respect to the SUCC score. The

algorithms marked with ∗ directly use D as metric while the other ones use the basis set Gbasis to transform
the dataset into a vector space. The results are extremely low, further highlighting some of the observations

from Section 4.1 that D fails at characterizing large groups of songs and better highlights singular behaviours.

As we expected given the observations from Section 4.1, and in particular the obser-
vations made in Figure 10, the metric D does not properly encapsulate the properties
of the artists to characterize them. Furthermore, in the case of the artist features,
since it is very diverse (1431 different feature values out of the 4166 entries of the
dataset), one cannot expect the training set to cover enough information for the al-
gorithm to be able to properly classify songs of the test set. For this feature, we are
actually in the case of the curse of dimensionality and would likely need to greatly in-
crease the size of the dataset while keeping the same number of artists to have a chance
to solve this problem. We now conclude this section with the evaluation strategy for
multi-categorical feature values.

Recall that, in the case of the features genre and type, fS and φ are both lists
of categorical values. To represent this, we identify fS and the output of φ with a
distribution on F , where F is the set of feature values (for example ‘alternative rock’,
‘brit pop’, and ‘gangsta rap’ for genre and ‘rock’, ‘alternative’, and ‘art’ for type).
More precisely, fS = (fS [i])i∈F ∈ [0, 1]F is defined by

fS [i] =

{
1
K if i is one of the K feature values of S
0 otherwise .

In particular, this implies that ∑
i∈F

fS [i] = 1 .
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A similar definition is used for φ(S | Gtrain, D) = (φ(S)[i])i∈F . In other words, we see
fS and φ(S | Gtrain, D) as measures of probability on F corresponding to the odds of
S to take a specific feature value. We now consider the following evaluation metrics
for multi-categorical features. Write δ+ for the function such that δ+(x) = 1 if and
only if x > 0.

• The correctness, corresponding to the fact that any one of the guessed feature
in φ is correct:

CORR =
1

|Gtest|
∑

S∈Gtest

δ+

(∑
i∈F

fS [i] · φ(S)[i]

)
;

• The precision, corresponding to the ratio of correctly guessed features of S given
φ:

PREC =
1

|Gtest|
∑

S∈Gtest

∑
i∈F

fS [i] · δ+
(
φ(S)[i]

)
;

• The accuracy, corresponding to the probability of correctly guessing a feature of
S using φ as a probability distribution:

ACC =
1

|Gtest|
∑

S∈Gtest

∑
i∈F

δ+
(
fS [i]

)
· φ(S)[i] ; and

• The exact matching, corresponding to the number of features exactly evaluated
by φ:

MATCH =
1

|Gtest|
∑

S∈Gtest

∑
i∈F

δ0

(
fS [i]− φ(S)[i]

)
.

To understand better these metrics, let us consider a couple of specific cases.

• Imagine that φ always guesses that each song has all possible feature values:
φ(S)[i] = 1/|F|. In that case, both correctness and precision would be 100%,
but the accuracy would be rather low (related to the average number of features
per song) and the exact matching likely 0% (except if there exist songs with all
features).
• Imagine that φ always guesses a single and correct feature: φ(S)[i] = 1 for some

i such that fS [i] > 0. In that case, the correctness and accuracy would be 100%,
the precision would be the average of the inverse number of features of a song
(for example, if all songs have exactly 2 feature values, then it would equal 50%)
and the exact matching would equal the percentage of songs having a single
feature.

With that in mind, a high CORR or PREC score should be evaluated with the corre-
sponding ACC and MATCH scores: if the latter ones are low this only means that the
classification function gives a lot of features for each song. The evaluation of ds with
regards to these different metrics on genre and type can be found in Table 4.

Observing the results from Tables 2, 3, and 4, it is clear that D does not provide
good results in terms of classification. Indeed, in all the considered cases, the results do
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genre types
CORR PREC ACC MATCH CORR PREC ACC MATCH

10NC∗ 0.12% 0.12% 0.12% 0.60% 48.32% 22.88% 45.20% 6.95%
20NC∗ 0.00% 0.00% 0.00% 0.48% 54.80% 25.42% 51.50% 7.79%

SVC∗ 6.35% 4.10% 2.14% 0.36% 51.44% 24.22% 43.74% 6.12%

GNB 69.42% 57.37% 2.26% 0.00% 87.29% 70.39% 5.92% 0.00%
BNB 0.00% 0.00% 0.00% 0.48% 58.87% 26.77% 58.87% 9.35%

DTC 15.83% 9.47% 6.40% 0.60% 54.08% 28.49% 25.04% 1.08%

Table 4. The classification results for the two multi-categorical features, genre and type. The algorithms
marked with ∗ directly use D as metric while the other ones use a basis set to transform the dataset into a

vector space. One can observe that the results between genre and type are not as correlated as that of year and

decade in Table 2; this is not so surprising since the relation between genre and type is not as straightforward
as that of year and decade. Once again, these results are not notably better than random guesses and the

high CORR and PREC scores of GNB likely mean that this algorithms guesses a lot of features, as explained

before.

not substantially improve a simple random guess. However, this should not fully come
as a surprise: D was designed to extract anomalous behaviours from a song dataset
and did not intend to provide global properties.

The low classification scores of D can actually be related to the results from Sec-
tion 4.1. Indeed, we observed there that D did not provide clear rankings of the features
and explained that, when considering many songs, the pattern matrices would cover a
wide range of behaviours and would thus cancel the effect of D. Thus, in order for D to
show its true potential, one need to more precisely analyse relations between smaller
groups; we were able to so in Section 4.2 and 4.3, where we found interesting and
surprising relations between specific features and patterns. It is then not surprising
that these specific and outlying behaviours do not show in the results of Tables 2, 3,
and 4.

6. Discussion

Embedding songs into 2-dimensional similarity matrices is a powerful tool for mod-
elling their underlying structure. Moreover, this embedding can be applied to compare
songs with each other according to their pattern structures. This approach allows the
definition of precise metrics on groups of songs which helps to unveil underlying com-
monalities amongst artists, years, or genres. By defining the similarity matrices and
the distance on these matrices, one can observe interesting repetitions and commonly
used structures over a large set of songs.

Outcome of present study

A common approach to group songs is according to some known information, such as by
artist, or year, before comparing their pattern structures. This leads to the definition
of the VF score and the study of Section 4.1. Although theoretically interesting, this
method shows limitations due to the inevitable variety of structures which appear
when comparing multiple songs (see the analysis made in Figure 10). To minimize
such problems, two possible improvements on the VF score could be implemented.

The first improvement would be to normalize all groups to the same size. This
could be done either by changing the dataset directly or by computing differently the
VF score: for example, instead of summing the average distance over all songs, just
consider the N closest songs, with N being fixed over all groups. If N is well-chosen,
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this could balance the bias towards small groups, observed in Figure 10, by making
large groups more likely to have a small VP score. However, this would tend to ignore
sub-groups of songs, making this analysis less objective.

The second improvement would be to combine these groups with a clustering al-
gorithm in order to reduce the noise created by outliers. In that sense, this method
would be more similar to the cluster-based approach of Section 4.2, but where all the
clusters must have the same feature values, and would thus likely only provide small
improvements.

The limitation of the feature-based approach, that is sorting features according to
their VF score, pushed for further studies on the relation between D and the song
features. This led to the cluster-based approach of Section 4.2 and the neighbour-
based approach of Section 4.3. By first using D to create relevant groups of songs
and then computing their VF score, it is possible to highlight inherent properties that
were not observable when simply grouping songs according to their feature values (see
Figures 13 and 14). Both of these two grouping methods showed similar results as they
were able to find groups of songs with repeating feature values that were previously
missed. These two methods also complete each other. Since the cluster-based approach
creates a partition of the songs, each group can be defined as the representation of
a specific pattern structure. Hence, by finding groups with similar feature values,
these groups can be interpreted as a typical structure used for this feature value and
not elsewhere. Conversely, the neighbour-based approach tends to put some songs
into more neighbourhoods than others and cannot be interpreted as typical for the
structures. However, it allows the comparison of a song with other similar ones and is
able to identify songs with unexpected patterns (see Figures 16 and 17).

Possible follow-up analysis

While the novelty of this study was mainly based on comparing similarity matrices of
songs, the full use of the information available in standard symbolic music notation
could open the door to further development in music analysis. First, new types of
similarity matrices could be defined. For example, if instead of comparing the notes
played between bars, the representation was using the position of the notes in the
current chord, then the similarity matrices could contain some finer information on
the evolution of the song. In this case, a simple pattern being repeated on different
scales could be discovered, and this could lead to a better definition of pattern matrices.
Second, the full use of standard music notation could also be useful when comparing
different songs. Either by directly comparing what is being played or by comparing
chord progressions, a new distance on songs D could be defined, not directly related
to the pattern structure but rather to the composition structure. Finally, by only
considering a subset of the instruments of the song, this method could be used to
characterize songs according to specific metrics (for example the drum patterns, or
the rhythmic patterns). Using this approach could also lead to representing songs
with multiple similarity matrices, according to the different instruments, and then
using more complex statistical tools to study their properties.

This study opens the door to further development in music structure analysis, espe-
cially in the field of similarity matrix representation. With our newly created dataset,
made of standard music notations of songs, new types of similarity matrices can be
defined, for example by borrowing methods from music theory. The novel approach of
this study, based on comparing similarity matrices rather than analyzing them indi-
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vidually, also creates new tools for the analysis of song structure. It is now possible
to classify a large number of songs by similarity of patterns and to highlight repeated
structures used by artists, years, or genres.

Finally, the grouping methods applied above were able to extract certain groups of
songs with interesting behaviour. The outcome of this project could thus be combined
with a finer analysis of the properties of some of these songs. For example, one could
study in more details the full discography of the artist Linkin Park, as it appears to
often use similar structures (see Figure 14), or compare other properties of the songs
from Figure 16 and 17, such as their chord progression or the structure of the different
instruments.
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Appendix A. Dataset properties

In this appendix, we provide some extra information and properties regarding the
dataset created for this work. We remind the reader that the code used for this study
as well as more details on the dataset can be found in the dedicated Github reposi-
tory [Corsini, ]. The most general properties of the dataset are summarised in Table A1
and some further information on the features can be found in Table A2. Below, we
explain the process of creating the feature type from genre.

#Songs #Artists #Features

4166 1431 6

Table A1. A summary of the statistics of the dataset used for this study.
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Feature artist year genre type

Number of values 1431 62 (1958 - 2019) 473 120

Table A2. A summary of the statistics of the features.

Types and genres

To compute the list of feature values considered in type, we used the following strategy.
First, each genre was split into its sequence of words: for example ‘rock’ would remain
as ‘rock’, but ‘pop rock’ would lead to both ‘pop’ and ‘rock’. Then, all the output
words from all genres were combined in a list. Finally, each word of that list contained
in at least two different genres was added to the type feature values.

It is interesting to note that very few words appearing in the genres only belong to
a single genre. For example, words such as ‘avant’, ‘italo’, or even ‘swamp’ all appear
in two genres (respectively ‘avant funk’ and ‘avant pop’, ‘italo dance’ and ‘italo disco’,
and ‘swamp pop’ and ‘swamp rock’ ), and thus belong to the list of types. However,
some words such as ‘sunshine’ (from ‘sunshine pop’ ), ‘viking’ (from ‘viking metal’ ), or
‘happy’ (from ‘happy hardcore’ ) only belong to a single genre and thus do not belong
to the list of types. Eventually, once this process of choosing words appearing in two
different genres was done, some type names were combined, for clarity. For example
‘electronic’ was removed to only keep ‘electro’, ‘doo’ and ‘wop’ were combined as
‘doo wop’, ‘prog’ and ‘progressive’ were combined under the type ‘progressive’, and
‘tex’ was re-labelled ‘texan’. The 10 types with the most corresponding genres can
be found in Table A3 while the full list of correspondence can be found in [Corsini, ,
dataset/types.json].

Appendix B. Special cases of the bar distance

In this appendix, we provide a few special cases encountered when computing dbar, the
distance between two bars, introduced in Section 2. The three cases shown here are
distance between chords (Figure B1), distance with the presence of a rest (Figure B2),
and distance regarding onsets (Figure B3).

Figure B1. An example of three bars each playing a single chord. While the first two bars seem more similar
and the two chords played only differ by one note, the distance dbar between each pair of distinct bars will

always be 2 here, since the algorithm simply consider the fact that the notes played are the same or not. A
more subtle metric dbar could be defined but would require to define a more complex distance between chords.

Appendix C. Extra figures

In this appendix, we provide some extra figures to complete the study presented in
Section 4. We start by providing the first VP scores of the different features: title
in Figure C1, decade in Figure C2, genre in Figure C3, and type in Figure C4. We
recall that the first VP scores for year can be found in Figure 9 while those of artist
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Figure B2. An example of two bars playing the same chord, but with the second one shortening the duration

the chord is being played. The distance dbar between these two bars is 1 since the onset of the two chords and
the chords are the same, but the rest in the second bar creates a difference between them.

Figure B3. An example of two bars with the same chord played all along but with different onsets. The
distance dbar between these two bars is 3 since, even though the same note would be heard all along, the first

bar has a unique onset and the second one has four onsets, on the tempo. Thus, the first onset is common to

the two bars and does not increase dbar, but the following three are only found in the second bar and each of
them increments the distance by 1.

are showcased in Figure 10 with different limits on the minimal number of songs per
artist.

After showing the VP score for all features, we now show the VF scores of our
clustering methods (apart from the feature title, for which we do not have enough
repetitions to have a meaningful interpretation of the clusters with a low VF score).
While the first VF scores of the feature year can be found earlier, in Figure 13, we
provide here the first VF scores of artist (in Figure C5), genre (in Figure C6), and
type (in Figure C7). We further show the songs of cluster 471 of our algorithm, which
appears as one of the lowest scores in all previous figures.

We conclude this appendix with a study on the use of the different clustering algo-
rithms: Agglomerative Clustering, Spectral Clustering, and K-Medians. To do so, we
ran two experiments:

(1) we apply each of the clustering algorithms once and output 20 clusters.
(2) we apply each clustering algorithm recursively, as described in Algorithm 1, using

the aforementioned parameters (nc = 2, mi = |G|, and ms = 15).

The general statistics of the clusters in the first experiment are shown in Figure C9.
As one can see, K-Medians seems to be the best algorithm to use in that case since it
provides the most balanced clusters, and Spectral Clustering fails to extract relevant
information since it basically splits the dataset into one giant cluster and 19 leftover
clusters (in fact 17 of these clusters are singleton and do not show in Figure C9). The
general statistics of the clusters in the second experiment are shown in Figure C10
and are less readable than in the previous case. However, it is worth noting that 419
out of 1047 clusters (40%) are singleton in the case of K-Medians, while only 48 out
of 527 clusters (9%) are singleton in the case of Agglomerative Clustering. Spectral
Clustering outputs 37 singletons out of a total of 516 clusters (7%).

Given the above results, the choice of Agglomerative Clustering came as a desire
to balance the output of the two previous experiments and further made sense with
regard to the tree-like structure of the songs as shown in Figure 11.
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Figure C1. The titles ordered according to their VP score (only the first 20 lowest ones are depicted here).

The blue dots correspond to the VP scores, which are obtained by computing the average distance between
songs from a given decade. The blue bars show the standard deviation around this average distance. The bars

in red represent the number of songs who appeared for the first time in the corresponding decade. One can see

that all the lowest scores correspond to song covers, as to be expected.

Figure C2. The seven decades available in the dataset ordered according to their VP score. The blue dots

correspond to the VP scores, which are obtained by computing the average distance between songs from a given

decade. The blue bars show the standard deviation around this average distance. The bars in red represent
the number of songs who appeared for the first time in the corresponding decade. Although no decade has a

notably lower score than the next one, the decades past the year 2000 have higher score, meaning that they
have a (slightly) richer variety of patterns.

33



Types List of corresponding genres (Total number)

rock

acid rock, acoustic rock, alternative rock, arena rock, art rock, baroque rock, blues rock, boogie
rock, cello rock, celtic rock, chicano rock, christian alternative rock, christian rock, college rock,

comedy rock, country rock, dance rock, disco rock, electro rock, electronic rock, experimental rock,

folk rock, funk rock, garage rock, glam rock, gothic rock, grunge rock, hard rock, heartland rock,
hot rod rock, indie rock, industrial rock, instrumental rock, jam rock, jazz rock, latin rock, neo

progressive rock, new wave rock, noise rock, novelty rock, occult rock, piano rock, pop rock, power

rock, progressive rock, psychedelic rock, pub rock, punk rock, raga rock, rap rock, reggae rock, rock,
rock americana, rock and roll, rockabilly, rocksteady, roots rock, samba rock, shock rock, soft rock,

soul rock, southern rock, space rock, stadium rock, stoner rock, surf rock, swamp rock, symphonic

rock, synth rock, teen rock, texican rock and roll, western rockabilly, yacht rock (73)

pop

acoustic pop, adult pop, alternative pop, art pop, avant pop, baroque pop, bitpop, brit pop, chamber

pop, christmas synth pop, contemporary pop, country pop, dance pop, disco pop, dream pop, electro
pop, electronic pop, emo pop, euro pop, experimental pop, folk pop, funk pop, indie pop, j pop,

jangle pop, jazz pop, k pop, latin pop, mod pop, neon pop, operatic pop, orchestral pop, piano pop,
pop, pop beat, pop dance, pop disco, pop doo wop, pop funk, pop house, pop metal, pop punk, pop

r&b, pop rap, pop reggae, pop rock, pop soul, pop trap, post brit pop, power pop, power pop lo fi,

progressive pop, psychedelic pop, punk pop, r&b pop, rave pop, reggae pop, sophisti pop, soul pop,
space age pop, sunshine pop, surf pop, swamp pop, symphonic pop, synth pop, techno pop, teen

pop, traditional pop, trap pop, twee pop (70)

metal

alternative metal, cello metal, christian metal, comedy metal, doom metal, funk metal, glam metal,

gothic metal, groove metal, hair metal, heavy metal, industrial metal, metalcore, nu metal, pop

metal, power metal, progressive metal, proto metal, rap metal, sludge metal, speed metal, symphonic
metal, thrash metal, viking metal (24)

rap
alternative rap, chicano rap, cloud rap, comedy rap, country rap, dirty rap, emo rap, gangsta rap,
jazz rap, pop rap, pop trap, prog rap, punk rap, rap, rap folk, rap metal, rap rock, soundcloud rap

(18)

soul
blue eyed soul, chicago soul, country soul, hip hop soul, memphis soul, neo soul, northern soul,

philadelphia soul, pop soul, psychedelic soul, r&b soul, soul, soul blues, soul jazz, soul pop, soul

r&b, soul rock, southern soul (18)

punk

art punk, dance punk, garage punk, hardcore punk, pop punk, post punk, progressive punk, proto

punk, punk, punk blues, punk funk, punk pop, punk rap, punk rock, ska punk, skate punk, surf
punk (17)

country
alternative country, bluegrass country, christian country, contemporary country, country, country
blues, country folk, country pop, country rap, country rhythm and blues, country rock, country

soul, country talking blues comedy, outlaw country, progressive country, tex mex country (16)

electro
electro, electro dance, electro funk, electro hop, electro house, electro pop, electro r&b, electro rock,

electro swing, electronic, electronic dance, electronic pop, electronic rock, electronica, indie electronic

(15)

funk
avant funk, disco funk, electro funk, funk, funk metal, funk pop, funk rock, funky house, g funk,

jazz funk, latin funk, pop funk, psychedelic funk, punk funk, synth funk (15)

hip hop

acoustic hip hop, alternative hip hop, comedy hip hop, conscious hip hop, east coast hip hop, emo

hip hop, hardcore hip hop, hip hop, hip hop soul, latin hip hop, old school hip hop, political hip
hop, r&b hip hop, southern hip hop, west coast hip hop (15)

Table A3. The 10 types corresponding to the most genres in decreasing order. For a more complete list of
types and genres correspondence, see [Corsini, , dataset/types.json].
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Figure C3. The genres ordered according to their VP score (only the first 20 lowest ones are depicted here).

The blue dots correspond to the VP scores, which are obtained by computing the average distance between

songs with a given genre. The blue bars show the standard deviation around this average distance. The bars
in red represent the number of songs with the corresponding genre. It is worth observing that the second lower

VP score, corresponding to the genre ‘progressive pop’, has a rather large size compared to the rest of the other

genres with low score.

Figure C4. The types ordered according to their VP score (only the first 20 lowest ones are depicted here).

The blue dots correspond to the VP scores, which are obtained by computing the average distance between
songs with a given type. The blue bars show the standard deviation around this average distance. The bars

in red represent the number of songs with the corresponding specific type. Interestingly, most types refer to
genre adjectives (such as ‘gothic’, ‘acid’, ‘novelty’) rather than genre categories (such as ‘rock’ or ‘rap’) and
two types appear to have a low score but a rather large size (compared to the rest): ‘emo’ and ‘art’.
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Figure C5. Clusters ordered according to their VF score with regards to the feature artist (only depicting

the 20 lowest scores). The blue dots represent the average score of the cluster, the blue bars represent the
standard deviation around this score and the red bars represent the sizes of the clusters. This figure needs to

be combined with a representation of the clusters in order to appreciate its results. The cluster numbered 471

(thus one of the five with the lowest score) is represented in Figure C8.

Figure C6. Clusters ordered according to their VF score with regards to the feature genre (only depicting

the 20 lowest scores). The blue dots represent the average score of the cluster, the blue bars represent the
standard deviation around this score and the red bars represent the sizes of the clusters. This figure needs to

be combined with a representation of the clusters in order to appreciate its results. The cluster numbered 471

(thus the one with the lowest score) is represented in Figure C8.
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Figure C7. Clusters ordered according to their VF score with regards to the feature type (only depicting

the 20 lowest scores). The blue dots represent the average score of the cluster, the blue bars represent the
standard deviation around this score and the red bars represent the sizes of the clusters. This figure needs to

be combined with a representation of the clusters in order to appreciate its results. The cluster numbered 471

(thus the one with the second lowest score) is represented in Figure C8.

Figure C8. A representation of the cluster numbered 471, having a low VF score in Figure C5, C7, and C6. As

one can see, all songs have a similar genre (somewhere between ‘pop’ and ‘rock’), however the artist similarity
only arises from two of the songs being from Henrey Mancini. This means that to find finer similarities
between songs of the same artist, we need to lower the minimal size of a cluster to less than 10, as it was done

in Figure C5; in particular, this is how we managed to find the similarity between songs of Linkin Park from

Figure 14 (note that there are less than 10 songs in the top two clusters).
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Figure C9. A representation of the statistics of the clusters when applying the three algorithms and out-
putting 20 clusters. The blue dots represent the average distance between songs of a cluster, the blue bars the

standard deviation of these distances, and the red bars the sizes of the clusters. At the top is the output when

applying the Agglomerative Clustering, the bottom left figure corresponds to the K-Medians clustering and the
bottom right figure corresponds to the Spectral Clustering. As one can see, K-Medians provides a balanced set

of clusters, none of them being a singleton, while Spectral Clustering provides only three non-singleton clusters

and one with almost all the songs. These figures seem to show that K-Medians is the best algorithm, however,
when applied recursively to reduce the sizes of the clusters, it tends to create a lot of singleton clusters and
provides less interesting results than Agglomerative Clustering (see Figure C10).
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Figure C10. A representation of the statistics of the clusters when applying the three algorithms until all

clusters have size at most 15. The blue dots represent the average distance between songs of a cluster, the
blue bars the standard deviation of these distances, and the red bars the sizes of the clusters. At the top is

the output when applying the Agglomerative Clustering, the bottom left figure corresponds to the K-Medians
clustering and the bottom right figure corresponds to the Spectral Clustering. These figures are less readable

than those of Figure C9 and it is worth stating another output of the algorithm for each cases, counting the

total number of clusters and singletons: 527 clusters including 48 singletons for Agglomerative Clustering, 1047
clusters including 419 singletons for K-Medians, and 516 clusters including 37 singletons for Spectral Clustering.
Combinng the above figure with Figure C9 shows that Agglomerative Clustering is the most balanced algorithm

to consider here and thus explains our choice in Section 4.2.
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