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Abstract
In this article, we introduce Mallows processes, defined to be continuous-time càdlàg processes

with Mallows distributed marginals. We show that such processes exist and that they can be
restricted to have certain natural properties. In particular, we prove that there exists regular
Mallows processes, defined to have their inversions numbers Invj(σ) = |{i ∈ [j − 1] : σ(i) > σ(j)}|
be independent increasing stochastic processes with jumps of size 1. We further show that there
exists a unique Markov process which is a regular Mallows process. Finally, we study properties of
regular Mallows processes and show various results on the structure of these objects. Among others,
we prove that the graph structure related to regular Mallows processes looks like an expanded
hypercube where we stacked k hypercubes on the dimension k ∈ [n]; we also prove that the first
jumping times of regular Mallows processes converge to a Poisson point process.

1 Introduction
Write N = {1, 2, . . .} for the set of positive integers and let Sn be the set of permutations on [n] =
{1, 2, . . . , n}. We typically represent a permutation σ ∈ Sn as a sequence of integers (σ(1), . . . , σ(n)),
so for example, the permutation (3, 1, 4, 2) sends 1 to 3, 2 to 1, 3 to 4 and 4 to 2. It is also useful
to have more succinct notations for transpositions, so for i 6= j, we write (i j) for the transposition
sending i to j and j to i. Given two permutations σ, σ′ ∈ Sn, write σ ·σ′ for the composed permutation
defined by σ · σ′(i) = σ(σ′(i)).

For q ∈ [0,∞), the Mallows distribution [28] with parameters n and q is the probability measure
πn,q on Sn defined by

πn,q(σ) = qInv(σ)

Zn,q
,

where Inv(σ) = |{i < j : σ(i) > σ(j)}| is the number of inversions of σ, and Zn,q =
∏n
k=1(

∑k−1
`=0 q

`) is
a normalizing constant. Furthermore, write Invj(σ) = |{i ∈ [j − 1] : σ(i) > σ(j)}| for the number of
inversions of σ created by σ(j), implying that Inv(σ) =

∑n
j=1 Invj(σ) and that 0 ≤ Invj(σ) ≤ j − 1.

Finally, if σ is πn,q-distributed and σ′ is πn,q′ -distributed with q ≤ q′, note that Inv(σ) is stochastically
dominated by Inv(σ′), and so is Invj(σ) by Invj(σ) for all j ∈ [n].

We define a continuous-time Mallows process (or simplyMallows process) to be an Sn-valued càdlàg
stochastic process (Mn

t )t∈[0,∞) such that, for all t ∈ [0,∞),Mn
t is πn,t-distributed. For simplification,

and since it is always clear from context, we drop the superscript n and write (Mt)t∈[0,∞).
Given a Mallows process (Mt)t∈[0,∞) and using the stochastic monotony of Inv(·) and Invj(·), say

that it is monotone if, for all t < t′, we have

Inv(Mt) ≤ Inv(Mt′) ,

and say that it is strongly monotone if furthermore

Invj(Mt) ≤ Invj(Mt′)
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for all j ∈ [n]. Moreover, say that (Mt)t∈[0,∞) is smooth if it is strongly monotone and for all t ∈ (0,∞),
we have

Inv(Mt) ≤ Inv(Mt−) + 1 .

Finally say that it has independent inversions if the processes (Invj(Mt))t∈[0,∞) are independent over
j ∈ [n].

In this work we are mainly interested in defining and studying regular Mallows processes, defined to
be smooth Mallows processes with independent inversions. Our first result states that regular Mallows
processes exist and that there is a unique such process with the Markov property.

Theorem 1.1. Fix n ∈ N. There exists a unique càdlàg Markov process (Mt)t∈[0,∞) on Sn which is
a regular Mallows process.

The proof of Theorem 1.1 can be found in Section 2.2; it boils down to showing that (Mt)t∈[0,∞)
is characterized by the processes (Invj(Mt))t∈[0,∞) for j ∈ [n], and that such processes are time-
inhomogeneous birth processes with a well-defined generator. For the rest of the paper, we refer to
this unique process as the birth Mallows process, since it will be defined using its birth processes.

Given a Mallows process M = (Mt)t∈[0,∞), let GM = (Sn, E(GM)) be the undirected transition
graph ofM whose edge set is defined by

E(GM) :=
{

(σ, σ′) : P
(
∃t ∈ (0,∞),Mt− = σ,Mt = σ′

)
> 0
}
.

In other words, (σ, σ′) ∈ E(GM) if and only if it is possible forM to directly transition from σ to σ′.
For any graph G = (Sn, E(G)), consider its generator defined by

〈G〉 :=
{
σ−1 · σ′ : (σ, σ′) ∈ E(G)

}
,

so τ ∈ 〈G〉 if and only if G contains at least one edge of the form (σ, σ · τ). Write T = {(i j) : i 6= j} for
the set of transpositions and T a = {(i i+ 1) : i ∈ [n− 1]} ⊂ T for the set of adjacent transpositions.
Our next theorem controls the structure of GM, and in particular the permutations that belong to the
generator 〈GM〉 whenM is a smooth Mallows process. Let Hn = (Sn, E) be the expanded hypercube
of size n defined by

E =

(σ, σ′) :
n∑
j=1

∣∣Invj(σ)− Invj(σ′)
∣∣ = 1

 .

The reason for naming this graph the expanded hypercube comes from its structure. Indeed, this
graph is isomorphic to G = (V,E) defined by

V =
{

(x1, . . . , xn) : ∀i ∈ [n], 0 ≤ xi < i
}

and

E =

(x, x′) ∈ V 2 :
n∑
j=1
|xj − x′j | = 1

 ;

the latter graph can be seen as a hypercube expanded k times in dimension k. A representation of Hn
for n ∈ {2, 3, 4} can be found in Figure 1. The fact thatHn and G are isomorphic follows by considering
the image of Hn under the map Φ, defined in Section 2.1, and corresponding to the Lehmer code of
the permutation [25, 27].

We now use T , T a, and Hn to characterize the structure of GM and of 〈GM〉 whenM is a smooth
Mallows process. The proof of the next theorem appears in Section 3.1.
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Figure 1: A visual representation of the expanded hypercubes H2, H3, and H4. Using these figures,
Hn can be seen as a stack of hypercubes where each dimension k ∈ [n] has k hypercubes on top of
each other.

Theorem 1.2. Let M = (Mt)t∈[0,∞) be a smooth Mallows process. Then GM is a subgraph of Hn
and

T a ⊂ 〈GM〉 ⊂ T .

Moreover, ifM is regular, then

GM = Hn ,

and 〈GM〉 = 〈Hn〉 = T .

Consider now a monotone Mallows process (Mt)t∈[0,∞). Since (Inv(Mt))t∈[0,∞) is a jump process,
we will be considering its jumping times T1, . . . , T(n

2) defined as follows. For any 0 ≤ k ≤
(
n
2
)
, let

Tk := inf
{
t ∈ [0,∞) : Inv(Mt) ≥ k

}
.

Note that, without further assumptions, it is possible to have Tk−1 = Tk for some k ≥ 1. The next
results characterizes the asymptotic behaviour of the early jumping times.

Theorem 1.3. Let (Mt)t∈[0,∞) be a monotone Mallows process and T1, . . . , T(n
2) be its jumping times.

Then for any fixed k ∈ N, as n tends to infinity, we have

nTk
d−→ Gamma(k, 1) .

Moreover, if (Mt)t∈[0,∞) is regular, then

(nT1, . . . , nTk) d−→ PPk(1) ,

where PPk(λ) is the distribution of the first k points of a homogeneous Poisson point process on [0,∞)
with rate λ.

The proof of Theorem 1.3 can be found in Section 3.2, and boils down to first using the relation
between number of jumps and inversion numbers in a monotone process, then showing that the first
k jumps of a regular Mallows process occur for distinct inversion numbers, making them independent
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of each other. It is worth noting that Theorem 1.3 does not assume that (Mt)t∈[0,∞) is a Markov
process.

The rest of this work is organized as follows. In Section 2 we give useful tools to construct regular
Mallows processes and, in particular, define and prove the uniqueness of the birth Mallows process,
hence proving Theorem 1.1. Section 2 also defines another interesting Mallows process which is not a
Markov process and which we call the uniform Mallows process; in particular, this process is defined as
a function of only n independent uniform random variables, implying that the amount of information
necessary to generate it or known at a certain time can be computed. In Section 3 we establish various
properties of Mallows processes and prove Theorems 1.2 and 1.3. Section 3 also contains a sub-section
dedicated to properties of the amount of information related to the uniform Mallows process. Finally,
we conclude this work with Section 4 containing a list of open problems and conjectures related to
these newly defined Mallows processes, and in particular further properties we expect the birth Mallows
process to have.

1.1 Related work
The Mallows distribution of permutations was first introduced by C.L. Mallows [28] in the context of
ranking theory. The study of its structural properties has gained a lot of interest in recent years and now
contains literature related to various topics. Among the properties of these models that have attracted
the most attention, it is worth mentioning the length of longest increasing subsequences [6, 8, 24, 29]
as well as the cycle and subsequence structure [10, 18, 22, 30, 31], substantially studied over the
last decade. Other works studying exchangeability [20, 19], random matchings [4], binary search
trees [1], and colourings [23] have led to interesting insights on properties of these random permutations.
Finally, Mallows permutations have found themselves as a useful model for various applications, such
as convergence to stationarity [7, 13], statistical physics [33, 34], or even statistical learning [35] and
genomics [17].

2 Constructing regular Mallows process
In this section, we provide a natural framework for constructing regular Mallows processes and prove
Theorem 1.1.

2.1 An important bijection
Consider first the set En defined by

En =
{

(I1, . . . , In) : ∀j ∈ [n], 0 ≤ Ij ≤ j − 1
}
,

and let

Φ : En −→ Sn
I 7−→ σ ,

be the unique bijection between En and Sn such that Ij = Invj(σ). A simple way to generate Φ is
by defining [n] \ {σ(n), . . . , σ(k + 1)} = {x1 < . . . < xk} and setting σ(k) = xk−Ik

(see [9] for further
details). This bijection shows to be an efficient way to easily generate Mallows permutations and
Mallows processes, as shown in the next two propositions.

Proposition 2.1 ([31]). Fix n ∈ N and q ∈ [0,∞). Let I = (I1, . . . , In) ∈ En be a random sequence
such that the different entries of I are independent and, for all j ∈ [n], for all 0 ≤ k ≤ j − 1, we have

P(Ij = k) = qk∑j−1
`=0 q

`
.
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Then Φ(I) is πn,q-distributed.

With this proposition, it becomes easy to generate regular Mallows processes, as stated in the
following proposition.

Proposition 2.2. Fix n ∈ N. Let (I(t))t∈[0,∞) = (I1(t), . . . , In(t))t∈[0,∞) be a càdlàg process taking
values in En such that the coordinate processes {(Ij(t))t∈[0,∞), j ∈ [n]} are independent and, for all
j ∈ [n] and 0 ≤ k ≤ j − 1, we have

P
(
Ij(t) = k

)
= tk∑j−1

`=0 t
`
.

Then (Φ(I(t)))t∈[0,∞) is a Mallows process with independent inversions. Moreover, if the processes
(Ij(t))t∈[0,∞) are increasing, then (Φ(I(t)))t∈[0,∞) is a strongly monotone Mallows process. Finally,
if additionally the increments of the processes (Ij(t))t∈[0,∞) are of size 1, then (Φ(I(t)))t∈[0,∞) is a
regular Mallows process.

Proof. Write (Mt)t∈[0,∞) = (Φ(I(t)))t∈[0,∞). The fact that (Mt)t∈[0,∞) is a Mallows process simply
follows from applying Proposition 2.1. Similarly, if the processes (Ij(t))t∈[0,∞) are increasing, then, by
the definition of Φ, (Mt)t∈[0,∞) is strongly monotone.

Assume now that the processes (Ij(t))t∈[0,∞) are increasing with increments of size 1. To prove
that (Mt)t∈[0,∞) is regular, it suffices to show that (Inv(Mt))t∈[0,∞) has increments of size 1.

Let T jk by the k-th jumping time of Ij , that is

T jk = inf
{
t : [0,∞) : Ij(t) ≥ k

}
.

Using our assumption on (Ij(t))t∈[0,∞), we know that T j1 < T j2 < . . . < T jj−1. Moreover, the definition
of T jk implies that

P
(
T jk ≤ t

)
= P

(
Ij(t) ≥ k

)
= 1∑j−1

`=0 t
`

j−1∑
`=k

t` ,

so T jk is a continuous random variable. Since the coordinate processes ((Ij(t))t∈[0,∞), j ∈ [n]) are
independent, it follows that for j 6= j′ almost surely T jk 6= T j

′

k′ , which implies that all the values
{T jk : j ∈ [n], k ∈ [j − 1]} are almost surely distinct. Using that

Inv(Mt) =
∣∣{1 ≤ k < j ≤ n : T jk ≤ t

}∣∣ ,
it follows that (Inv(Mt))t∈[0,∞) only has increments of size 1.

Proposition 2.2 is a useful tool for building regular Mallows processes; we develop this in the next
section.

2.2 Two regular Mallows processes
In this section, we construct two different regular Mallows processes, both based on defining an ap-
propriate process (I(t))t∈[0,∞) and applying Proposition 2.2. For the rest of this section, fix n ∈ N.

2.2.1 Birth Mallows process

The construction of the (unique) birth Mallows process, is based on the time-inhomogeneous birth
processes defined in the following lemma.
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Lemma 2.3. Fix j ∈ N. For any 0 ≤ k ≤ j − 1 and t ∈ [0,∞), let

pj(t, k) := 1∑j−1
`=0 t

`

(k + 1)
j−2∑
`=0

(`+ 1)t` − j
j−2∑

`=j−k−2
(`− j + k + 2)t`

 .
Define now the time-inhomogenous birth process (Bj(t))t∈[0,∞) by Bj(0) = 0 and infinitesimal rates
given by

P
(
Bj(t+ h) = k + `

∣∣∣ Bj(t) = k
)

=

 1− hpj(t, k) + o(h) if ` = 0
hpj(t, k) + o(h) if ` = 1
o(h) otherwise .

Then for all 0 ≤ k ≤ j − 1 and all t ∈ [0,∞), we have

P
(
Bj(t) = k

)
= tk∑j−1

`=0 t
`
.

Proof. First, note that

pj(t, j − 1) = 1∑j−1
`=0 t

`

[
j

j−2∑
`=0

(`+ 1)t` − j
j−2∑
`=−1

(`+ 1)t`
]

= 0 ,

which supports the fact that Bj(t) ≤ j − 1. Now, before proving the result, we verify that pj is
non-negative, a necessary assumption for this birth process to be well-defined. For 0 ≤ k ≤ j − 2 and
t ∈ [0,∞), we have

(k + 1)
j−2∑
`=0

(`+ 1)t` − j
j−2∑

`=j−k−2
(`− j + k + 2)t`

= (k + 1)
j−k−3∑
`=0

(`+ 1)t` +
j−2∑

`=j−k−2

[
(k + 1)(`+ 1)− j(`− j + k + 2)

]
t` .

The first sum is non-negative, and by re-organizing the terms inside the second sum, we have

(k + 1)(`+ 1)− j(`− j + k + 2) = k + 1− j(k + 2− j)− `(j − k − 1) .

Since j − k − 1 ≥ 1 > 0, the previous equation is decreasing in `. Using that ` ≤ j − 2, it follows that

(k + 1)(`+ 1)− j(`− j + k + 2) ≥ (k + 1)(j − 2 + 1)− j(j − 2− j + k + 2)
= j − k − 1 > 0 ,

proving that pj(t, k) ≥ 0.
We now want to prove that Bj(t) has the desired distribution. To do so, we prove by induction on

k that

P
(
Bj(t) = k

)
= tk∑j−1

`=0 t
`
.

For k = 0, using that

P
(
Bj(t+ h) = 0

∣∣∣ Bj(t) = 0
)

= 1− hpj(t, 0) + o(h) ,
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we have that
∂

∂t

(
P
(
Bj(t) = 0

))
= −pj(t, 0)P

(
Bj(t) = 0

)
.

We solve this equation using that P(Bj(0) = 0) = 1 and that

pj(t, 0) = 1∑j−1
`=0 t

`

j−2∑
`=0

(`+ 1)t` = ∂

∂t

(
log
(
j−1∑
`=0

t`

))
,

to obtain

P
(
Bj(t) = 0

)
= 1∑j−1

`=0 t
`
.

Assume now that for some 0 ≤ k ≤ j − 2, we have

P
(
Bj(t) = k

)
= tk∑j−1

`=0 t
`
.

Then, the forward equation tells us that

P
(
Bj(t+ h) = k + 1

)
=
k+1∑
`=0

P
(
Bj(t+ h) = k + 1

∣∣∣ Bj(t) = `
)
P
(
Bj(t) = `

)
=
[
1− hpj(t, k + 1)

]
P
(
Bj(t) = k + 1

)
+ hpj(t, k) tk∑j−1

`=0 t
`

+ o(h) ,

from which it follows that

∂

∂t

(
P
(
Bj(t) = k + 1

))
= −pj(t, k + 1)P

(
Bj(t) = k + 1

)
+ pj(t, k) tk∑j−1

`=0 t
`
. (1)

Consider the target function for P(Bj(t) = k + 1):

f(t) = tk+1∑j−1
`=0 t

`
. (2)

Note that

−pj(t, k + 1)f(t) + pj(t, k) tk∑j−1
`=0 t

`
= tk∑j−1

`=0 t
`

[
pj(t, k)− tpj(t, k + 1)

]
, (3)

from which, using the definition of pj , we obtain

pj(t, k)− tpj(t, k + 1) = 1∑j−1
`=0 t

`

(k + 1)
j−2∑
`=0

(`+ 1)t` − j
j−2∑

`=j−k−2
(`− j + k + 2)t`


− 1∑j−1

`=0 t
`

(k + 2)
j−2∑
`=0

(`+ 1)t`+1 − j
j−2∑

`=j−k−3
(`− j + k + 3)t`+1

 .
Using that

(k + 1)
j−2∑
`=0

(`+ 1)t` − (k + 2)
j−2∑
`=0

(`+ 1)t`+1 = −(k + 2)(j − 1)tj−1 +
j−2∑
`=0

(k − `+ 1)t` ,
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and that

−j
j−2∑

`=j−k−2
(`− j + k + 2)t` + j

j−2∑
`=j−k−3

(`− j + k + 3)t`+1 = j(k + 1)tj−1 ,

we obtain

pj(t, k)− tpj(t, k + 1) = 1∑j−1
`=0 t

`

j−1∑
`=0

(k − `+ 1)t` .

Plug the previous formula into (3) and use the definition of f from (2) to obtain that

−pj(t, k + 1)f(t) + pj(t, k) tk∑j−1
`=0 t

`
= tk(∑j−1

`=0 t
`
)2

[
j−1∑
`=0

(k + 1− `)t`
]

= f ′(t) .

Note now that this last equation is the same as (1) where the probability P(Bj(t) = k+ 1) is replaced
by f(t). Using that f(0) = P(Bj(0) = k + 1) = 0, it follows that P(Bj(t) = k + 1) = f(t) which
completes the inductive step. This concludes the proof of the lemma.

Using Lemma 2.3, we can now define the birth Mallows process.

Proposition 2.4. Let (B(t))t∈[0,∞) = (B1(t), . . . , Bn(t))t∈[0,∞), where (Bj(t))t∈[0,∞) is defined as in
Lemma 2.3 and let the birth Mallows process be defined by

(MB
t )t∈[0,∞) := (Φ(B(t)))t∈[0,∞) .

Then (MB
t )t∈[0,∞) is a regular Mallows process and a càdlàg Markov process.

Proof. By the definition of B1, . . . , Bn from Lemma 2.3, we know that (B(t))t∈[,∞) is a càdlàg process
of En satisfying all conditions of Proposition 2.2. This implies that (MB

t )t∈[0,∞) is a regular Mallows
process. To see that it is also a Markov process, recall that Φ is a bijection, meaning that{

MB
t = σ

}
=
{
B(t) = Φ−1(σ)

}
=
{

(B1(t), . . . , Bn(t)) = Φ−1(σ)
}
.

Now, since all the processes (B1(t))t∈[0,∞), . . . , (Bn(t))t∈[0,∞) are time-inhomogeneous birth processes,
in particular they are Markov processes. This implies that, for any t1 < . . . < tk < t and σ1, . . . , σk, σ ∈
Sn, we have

P
(
MB

t = σ
∣∣∣MB

t1 = σ1, . . . ,MB
tk

= σk

)
= P

(
B(t) = Φ−1(σ)

∣∣∣ B(t1) = Φ−1(σ1), . . . , B(tk) = Φ−1(σk)
)

=
n∏
j=1

P
(
Bj(t) = Φ−1(σ)j

∣∣∣ Bj(t1) = Φ−1(σ1)j , . . . , Bj(tk) = Φ−1(σk)j
)
,

where the second inequality follows from independence of the coordinate processes of (B(t))t∈[0,∞).
But then, using that these are Markov processes, we obtain

P
(
MB

t = σ
∣∣∣MB

t1 = σ1, . . . ,MB
tk

= σk

)
=

n∏
j=1

P
(
Bj(t) = Φ−1(σ)j

∣∣∣ Bj(tk) = Φ−1(σk)j
)

= P
(
MB

t = σ
∣∣∣MB

tk
= σk

)
,

which exactly corresponds to the fact that (MB
t )t∈[0,∞) is a Markov process.
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In order to conclude the proof of Theorem 1.1, it only remains to prove that the birth Mallows
process is the unique regular Mallows process which is also a Markov process.

Proof of Theorem 1.1. Thanks to Proposition 2.4, we know that there exists a càdlàg Markov process
which is a regular Mallows process.

Conversely, using Φ as defined in Section 2.1, regular Mallows processes are fully characterized by
the processes (Inv1(Mt))t∈[0,∞), (Inv2(Mt))t∈[0,∞), . . . , (Invn(Mt))t∈[0,∞), and since regular Mallows
processes have the independent inversion property, these processes are independent jump processes.
Moreover, using that a regular Mallows process is by definition smooth, we know that these pro-
cesses will only jump by increments of 1. This means that each (Invj(Mt))t∈[0,∞) for j ∈ [n] is a
time-inhomogeneous birth process, for which properties of time-homogenous birth process apply by
adapting the formulas to incorporate the time parameter (see [21, Section 6.8] for the properties of
time-homogeneous birth processes, which naturally extend to time-inhomogenous birth processes). In
particular, for any j ∈ [n], the time-inhomogenous birth process (Invj(Mt))t∈[0,∞) is fully character-
ized by its infinitesimal generator

gj(t, k) = lim
h↓0

1− P
(
Invj(Mt+h) = k

∣∣ Invj(Mt) = k
)

h
,

just like in the case of time-homogeneous processes. Furthermore, these incremental generators gj have
to satisfy the forward equation

∂

∂t

(
P
(

Invj(Mt) = k + 1
))

= gj(t, k)P
(

Invj(Mt) = k
)
− gj(t, k + 1)P

(
Invj(Mt) = k + 1

)
.

Since the previous equation is the same as (1) with pj replaced by gj , it follows that gj = pj for all
j ∈ [n]. This proves the uniqueness of such process.

2.2.2 Uniform Mallows process

We now define a second Mallows process, referred to as the uniform Mallows process, written (MU
t )t∈[0,∞),

which is based on using a set of n uniform random variables along with the following lemma.

Lemma 2.5. Fix j ∈ N and u ∈ (0, 1), and define a function fj( · ;u) : [0,∞) 7→ {0, 1, . . . , j − 1} by

fj(t;u) =


⌊

log(1−u(1−tj))
log t

⌋
if t /∈ {0, 1}

0 if t = 0
bjuc if t = 1

.

Then fj( · ;u) is increasing. Moreover, if U is a Uniform([0, 1]) random variable, then for all 0 ≤
k ≤ j − 1 and all t ∈ [0,∞), we have

P
(
fj(t;U) = k

)
= tk∑j−1

`=0 t
`
.

Proof. First of all, consider φ(t) = log(1−u(1−tj))
log t . Then we have

φ′(t) = 1
(log t)2

[
jutj−1

1− u(1− tj) log t− 1
t

log
(

1− u(1− tj)
)]

= 1
t(log t)2

[
utj

1− u(1− tj) log(tj)− log
(

1− u(1− tj)
)]

.

Now, by the concavity of log, we know that

λ log 1
x

+ (1− λ) log 1
y
≥ log

(
1

λx+ (1− λ)y

)
.
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Apply this formula with λ = utj

1−u(1−tj) , x = 1
tj and y = 1 to obtain

utj

1− u(1− tj) log(tj) ≥ log
(

1
u

1−u(1−tj) + 1−u
1−u(1−tj)

)
= log

(
1− u(1− tj)

)
,

which proves that φ′(t) ≥ 0. This proves that fj( · ;u) is increasing on (0, 1) and on (1,∞). To conclude
the proof of the first claim of the lemma, note that fj( · ;u) is also continuous at 0 and 1.

For the second part of the lemma, first note that the statement holds for t = 0 and t = 1. Then,
for t > 0 with t 6= 1, and for all 0 ≤ k ≤ j − 1, we have

P
(
fj(t;U) = k

)
= P

(
k ≤ log(1− U(1− tj))

log t < k + 1
)

= P
(
tk − 1
tj − 1 ≤ U <

tk+1 − 1
tj − 1

)
= tk(t− 1)

tj − 1 ,

which is the desired formula. This concludes the proof of the proposition.

Using this lemma, we now define the uniform Mallows process.

Definition 2.6. Let U1, . . . , Un be a set of n independent Uniform([0, 1]) random variables and let
I(t) = (f1(t;U1), . . . , fn(t;Un)), where f1, . . . , fn are as in Lemma 2.5. Then the uniform Mallows
process is defined by (MU

t )t∈[0,∞) = (Φ(I(t)))t∈[0,∞).

Thanks to Lemma 2.5 and Proposition 2.2, the process (MU
t )t∈[0,∞) is a regular Mallows process.

However, this process is not a Markov process. Its properties will be further explored in Section 3.3.

3 Properties of regular Mallows processes
In this section, we prove Theorem 1.2 and 1.3, and study further properties of the uniform Mallows
process from Definition 2.6.

3.1 Transition graph
We start by proving our results regarding the graph structure of smooth and regular Mallows processes.

Proof of Theorem 1.2. The first part of the proof addresses the case whereM is smooth; the second
part proves the assertions of the theorem for regularM. Recall from Section 2.1 that for any I ∈ En
and for σ = Φ(I), the values σ(n), . . . , σ(1) can be recursively constructed by letting

[n] \ {σ(n), . . . , σ(j + 1)} = {x1 < . . . < xj} (4)

and by setting σ(j) = xj−Ij
.

For the first part of this proof, assume thatM = (Mt)t∈[0,∞) is a smooth Mallows process. Note
that the definition of the expanded hypercube directly implies that GM is a subgraph of H, since every
jump of (Mt)t∈[0,∞) corresponds to an increment of exactly one of its inversion numbers by 1, and by
definition every such increment corresponds to an edge of Hn.

We now prove that 〈GM〉 ⊂ T . Since GM is a subgraph of Hn, it suffices to prove that the generator
of Hn is a subset of T . Using the definition of Hn, the previous statement can be equivalently re-stated
as follows. For any I = (I1, . . . , In) ∈ En and any ` ∈ [n] such that I` < `−1, let I ′ = (I ′1, . . . , I ′n) ∈ En
be defined by I ′j = Ij for j 6= `, and I ′` = I` + 1. Then Φ(I ′) · (Φ(I))−1 is a transposition. We now
prove that this second and equivalent statement holds.
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Let I and I ′ be defined as above and let σ = Φ(I) and σ′ = Φ(I ′). Let us try to understand the
relation between σ and σ′. Using the characterization of Φ we gave at the beginning of the proof, it is
easy to verify that σ(j) = σ′(j) for all j > `, since Ij = I ′j . Now, at step `, we have

[n] \ {σ(`+ 1), . . . , σ(n)} = [n] \ {σ′(`+ 1), . . . , σ′(n)} = {x1 < . . . < x`} .

By definition, we then have σ(`) = x`−I`
and σ′(`) = x`−I′

`
= x`−I`−1. From this, it follows that

[n] \ {σ(`), . . . , σ(n)} =
(

[n] \ {σ(`+ 1), . . . , σ(n)}
)
\ {x`−I`

}

= {x1 < . . . < x`−I`−2 < x`−I`−1 < x`−I`+1 < . . . < x`}

and

[n] \ {σ′(`), . . . , σ′(n)} =
(

[n] \ {σ(`+ 1), . . . , σ(n)}
)
\ {x`−I`−1}

= {x1 < . . . < x`−I`−2 < x`−I`
< x`−I`+1 < . . . < x`} .

Since I`−1 = I ′`−1 two cases follow. Either I`−1 = I ′`−1 = I` and then σ(` − 1) = x`−I`−1 and
σ′(`− 1) = x`−I`

, meaning that σ(`− 1) = σ′(`) and σ′(`− 1) = σ(`); or I`−1 = I ′`−1 6= I`, and then
σ(`− 1) = σ′(`− 1). In this second case, we have that

[n] \ {σ(`− 1), . . . , σ(n)} = {x1 < . . . < x`−I`−1 < x`−I`+1 < . . . < x`} \ {σ(`− 1)}

and that

[n] \ {σ′(`− 1), . . . , σ′(n)} = {x1 < . . . < x`−I`−2 < x`−I`
< . . . < x`} \ {σ(`− 1)}

By applying the same argument as before, depending on the value of I`−2 = I ′`−2, we obtain that either
σ(`−2) = x`−I`−1 = σ′(`) and σ′(`−2) = x`−I`

= σ(`), or σ(`−2) = σ′(`−2) /∈ {x`−I`
, x`−I`−1}. By

repeating this argument, it follows that there exists i ∈ [`−1] such that σ(`−i) = σ′(`), σ′(`−i) = σ(`),
and for all `− i < j < `, σ(j) = σ′(j). Note that we necessarily have that i ≤ `− 1 since, in the case
where i > ` − 2, then σ(j) = σ′(j) for all ` − i < j < `. Now, using that ` − i ≤ 1, it follows that
σ(j) = σ′(j) for all 2 ≤ j < `; but we also know that this equality holds for all j > ` and then, since
σ and σ′ are permutation and since σ(`) 6= σ′(`), it follows that σ(1) = σ′(`) and σ(`) = σ′(1), hence
i = `− 1. Write now k = `− i and note that

[n] \ {σ(k), . . . , σ(n)} = [n] \ {σ′(k), . . . , σ′(n)} ,

and that, for all j < k, we have Ij = I ′j . These two statement along with the description of Φ given
in (4) imply that σ(j) = σ′(j) for all j < k. This shows that, for all j /∈ {k, `}, σ(j) = σ′(j), and that
σ(`) = σ′(k) and σ(k) = σ′(`). This is equivalent to saying that σ′ is obtained from σ by transposing k
and `, or in other words, that σ′ = σ ·(k `). This proves that 〈Hn〉 ⊂ T , hence showing that 〈GM〉 ⊂ T .

We now prove that T a ⊂ 〈GM〉. Note first that T a = {σ ∈ Sn : Inv(σ) = 1}. Suppose that
T a \ 〈GM〉 6= ∅ and consider τ ∈ T a \ 〈GM〉. By the definition of 〈GM〉 and GM, we have

P
(
Mt = τ

)
= P

(
Mt = τ,∃u > 0 :Mu− = id,Mu = τ

)
≤ P

(
∃u > 0 :Mu− = id,Mu = τ

)
= 0 .

However, the first probability on the left is non-zero whenever t > 0, creating a contradiction. Hence
T a ⊂ 〈GM〉

We now move on to the second part of the proof and prove that ifM is a regular Mallows process,
then GM = Hn and 〈GM〉 = 〈Hn〉 = T . We start by proving that GM = Hn. Since we already proved
that GM is a subgraph of Hn, it suffices to show that Hn is a subgraph of GM.

Consider (σ, σ′) ∈ E(Hn) and order σ and σ′ so that Inv(σ′) = Inv(σ) + 1; write I = (I1, . . . , In) =
Φ−1(σ) and I ′ = (I ′1, . . . , I ′n) = Φ−1(I ′). Using the definition of Hn, we know that there exists ` ∈ [n]
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such that I ′j = Ij for all j 6= ` and I ′` = I` + 1. For j ∈ [n], write (T jk )k∈[j−1] for the jumping times of
(Invj(Mt))t∈[0,∞), so

T jk = inf
{
t ∈ [0,∞) : Invj(Mt) ≥ k

}
.

For convenience, set T j0 = 0 and T jk = ∞ for k ≥ j. Note that the processes ((T jk )k∈[j−1])j∈[n] are
mutually independent and all have continuous distributions. Consider now the following event

E =
{

max
{
T jIj

: j ∈ [n]
}
< T `I`+1

< min
{
T jIj+1 : j 6= `

}}
.

To understand the role of E, let us first show that, if P(E) > 0, then (σ, σ′) ∈ E(GM) (we will later
prove that P(E) > 0). Assume that E holds. Then we can find t > 0 so that

max
{
T jIj

: j ∈ [n]
}
< t < T `I`+1

< min
{
T jIj+1 : j 6= `

}
.

Now, at time t, we have that Invj(Mt) = Ij for all j ∈ [n] since T jIj
< t < T jIj+1, implying that

Mt = Φ(I) = σ. Then, at time T `I`+1, the `-th inversion number of (Mt)t∈[0,∞) jumps to Ij + 1, while
no other coordinate jumps, which yields thatMT `

I`+1
= Φ(I ′) = σ′. Since there is no jump between t

and T `I`+1, this implies that

P
(
∃t ∈ (0,∞) :Mt− = σ,Mt = σ′

)
≥ P(E) . (5)

Hence, under the assumption that P(E) > 0, it follows that (σ, σ′) ∈ E(GM).
We now prove that P(E) > 0. We first prove by induction that, for any subset J ⊂ [n], we have

P
(

max
{
T jIj

: j ∈ J
}
< min

{
T jIj+1 : j ∈ J

})
> 0 .

This holds if |J | = 1 sinceM is regular, meaning that there are no two jumps at the same time. Now
assume that the statement holds for all sets of size k − 1 and let J ⊂ [n] be of size k. Let J ′ be any
subset of J of size k − 1 and write i = J \ J ′. By the induction hypothesis, we know that

P
(

max
{
T jIj

: j ∈ J ′
}
< min

{
T jIj+1 : j ∈ J ′

})
> 0 .

But then, since T iIi
is independent of ((T jk )0≤k≤j)j∈J′ and is continuously distributed, we have that

P
(

max
{
T jIj

: j ∈ J ′
}
< T iIi

< min
{
T jIj+1 : j ∈ J ′

} ∣∣∣ ((T jk )0≤k≤j
)
j∈J′

)
> 0 .

Since we have that T iIi
< T iIi+1 by assumption, it follows that

P
(

max
{
T jIj

: j ∈ J
}
< min

{
T jIj+1 : j ∈ J

})
> 0 ,

verifying the inductive step. But now, using a similar argument as the one to go from J ′ to J , applied
with J ′ = [n] \ {`} to I ′, we have that

P
(

max
{
T jI′

j
: j 6= `

}
< T `I′

`
< min

{
T jI′

j
+1 : j 6= `

} ∣∣∣ ((T jk )0≤k≤j
)
j 6=`

)
> 0 .

Since I ′j = Ij for j 6= ` and I ′` = I` + 1, it follows that

P
(

max
{
T jIj

: j 6= `
}
< T `I`+1 < min

{
T jIj+1 : j 6= `

} ∣∣∣ ((T jk )0≤k≤j
)
j 6=`

)
> 0 ,
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which, combined with our previous result applied to J = [n] \ {`}

P
(

max
{
T jIj

: j 6= `
}
< min

{
T jIj+1 : j 6= `

})
> 0 ,

leads to P(E) > 0. Combining P(E) > 0 with (5) and the fact that (σ, σ′) ∈ E(Hn) was arbitrary
yields that Hn is a subgraph of GM.

We conclude this proof by proving that 〈Hn〉 = T . Since we know that 〈GM〉 ⊂ T and that
GM = Hn which implies that 〈GM〉 = 〈Hn〉, it suffices to show that T ⊂ 〈Hn〉. Let (i j) ∈ T be such
that i < j. We now prove that there exists σ ∈ Sn such that (σ, σ · (i j)) ∈ E(Hn).

Fix I = (Ij)j∈[n] ∈ En such that Ij = j − i − 1 < j − 1 and that Ik = 0 for k 6= j. Let
I ′ = (I ′j)j∈[n] ∈ En be such that I ′k = Ik = 0 for k 6= j and that I ′j = Ij + 1 = j − i ≤ j − 1.
From the definition of Hn, we know that (Φ(I),Φ(I ′)) ∈ E(Hn). It now only remains to prove that
Φ(I ′) = Φ(I) · (i j). Using the definition of Φ, in particular the constructive definition of Φ given by
(4), we have that

Φ(I)(k) =

 k if k ≤ i or k > j
i+ 1 if k = j
k + 1 otherwise

(6)

= (1, . . . , i− 1,i, i+ 2, i+ 3, . . . , j − 1, j,i + 1, j + 1, . . . , n)

and that

Φ(I ′)(k) =

 k if k < i or k > j
i if k = j
k + 1 otherwise .

(7)

= (1, . . . , i− 1,i + 1, i+ 2, i+ 3, . . . , j − 1, j,i, j + 1, . . . , n) .

Indeed, the only cause of non-zero inversion number of Φ(I) comes from the value i+ 1 being found at
position j, creating j− i−1 inversions, and the only cause of non-zero inversion number of Φ(I ′) comes
from the value i being found at position j, creating j − i inversions. Finally, (6) and (7) imply that
Φ(I)(k) = Φ(I ′)(k) for any k /∈ {i, j} and that Φ(I ′)(i) = Φ(I)(j) = i+ 1 and Φ(I ′)(j) = Φ(I)(i) = i;
this exactly means that Φ(I ′) = Φ(I) · (i j), which concludes our proof.

3.2 Jumping times
In this section we prove Theorem 1.3. The proof is divided into two parts: first we derive the distri-
butional limit of a single jumping time, then we show that the full distribution is as claimed.

Proof of Theorem 1.3. Fix k ∈ N. In the case of a monotone Mallows process (Mt)t∈[0,∞), since
Inv(Mt) is increasing, we have that

P
(
Tk > t

)
= P

(
Inv(Mt) ≤ k − 1

)
.

Using the definition of Mallows permutations, it follows that

P
(
Tk > t

)
= 1∏n

k=1

(∑k−1
`=0 t

`
) k−1∑
`=0

∣∣∣{σ ∈ Sn : Inv(σ) = `
}∣∣∣t`

which means that

P
(
nTk > t

)
= 1∏n

k=1

(∑k−1
`=0

(
t
n

)`) k−1∑
`=0

∣∣∣{σ ∈ Sn : Inv(σ) = `
}∣∣∣

n`
t` .
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For the denominator, note that, for n > t, we have
n∏
k=1

(
k−1∑
`=0

(
t

n

)`)
=

n∏
k=1

(
1−

(
t
n

)k
1− t

n

)
=
(

1− t

n

)−n n∏
k=1

(
1−

(
t

n

)k)
.

Now, as n tends to infinity, the first term converges to et:(
1− t

n

)−n
−→ et .

For the second term, we have
n∏
k=1

(
1−

(
t

n

)k)
= exp

(
n∑
k=1

log
(

1−
(
t

n

)k))
.

Since (t/n)k is decreasing in k, we can apply a uniform bound over all the logarithmic terms and obtain
n∏
k=1

(
1−

(
t

n

)k)
= exp

(
O

(
1
n

))
= 1 + o(1) . (8)

This proves that
n∏
k=1

(
k−1∑
`=0

(
t

n

)`)
−→ et

as n tends to infinity.
Consider now S`n = |{σ ∈ Sn : Inv(σ) = `}|. Using the bijection Φ from Section 2, we have that

S`n =
∣∣∣{(I1, . . . , In) ∈ En : I1 + . . .+ In = `

}∣∣∣ .
By changing the condition that 0 ≤ Ij ≤ j − 1 in the definition of En to Ij ≥ 0 for an upper bound
and to 0 ≤ Ij ≤ min(1, j − 1) for a lower bound, we obtain

S`n ≥
∣∣∣{(I1, . . . , In) : I1 + . . .+ In = ` and 0 ≤ Ij ≤ min(1, j − 1)

}∣∣∣ =
(
n− 1
`

)
and

S`n ≤
∣∣∣{(I1, . . . , In) : I1 + . . .+ In = ` and Ij ≥ 0

}∣∣∣ =
(
n+ `− 1

`

)
.

It follows that, for any fixed ` and as n goes to infinity, we have

S`n
n`
−→ 1

`! .

Since k is fixed, this implies that

k−1∑
`=0

∣∣∣{σ ∈ Sn : Inv(σ) = `
}∣∣∣

n`
t` −→

k−1∑
`=0

t`

`! .

Combining the previous results, when n tends to infinity, we have that

P
(
nTk > t

)
−→ e−t

k−1∑
`=0

t`

`! =
∫ ∞
t

uk−1e−u

(k − 1)! du ,
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which proves that nTk
d→ Gamma(k, 1).

We now prove the second part of the theorem, stating that for any k ∈ N, the first k inter-jumping
times of regular Mallows processes converge to a Poisson point process. Let t ∈ [0,∞) and s > 0. Also,
for any σ ∈ Sn let I = (Ij)j∈[n] = Φ−1(σ). Since the process (Mt)t∈[0,∞) is regular, it has independent
inversions, which implies that

P
(
M t+s

n
= σ

∣∣∣M t
n

= σ, (Mu)0≤u< t
n

)
(9)

= P
(
∀j ∈ [n], Invj(M t+s

n
) = Ij

∣∣∣ ∀j ∈ [n], Invj(M t
n

) = Ij ,
(
Invj(Mu)

)
0≤u< t

n

)
=

n∏
j=1

P
(

Invj(M t+s
n

) = Ij

∣∣∣ Invj(M t
n

) = Ij ,
(
Invj(Mu)

)
0≤u< t

n

)
.

Note that, whatever the value of Ij ≥ 0 is, we have that

P
(

Invj(M t+s
n

) = Ij

∣∣∣ Invj(M t
n

) = Ij ,
(
Invj(Mu)

)
0≤u< t

n

)
= 1− P

(
Invj(M t+s

n
) > Ij

∣∣∣ Invj(M t
n

) = Ij ,
(
Invj(Mu)

)
0≤u< t

n

)
Moreover, by definition, we have

E
[
P
(

Invj(M t+s
n

) > Ij

∣∣∣ Invj(M t
n

) = Ij ,
(
Invj(Mu)

)
0≤u< t

n

)]
= P

(
Invj(M t+s

n
) > Ij

∣∣∣ Invj(M t
n

) = Ij

)
≤

P
(
Invj(M t+s

n
) > Ij

)
P
(
Invj(M t

n
) = Ij

) ,

and by the definition of (Mt)t∈[0,∞), it follows that

P
(
Invj(M t+s

n
) > Ij

)
P
(
Invj(M t

n
) = Ij

) =
1− t

n(
t
n

)Ij −
(
t
n

)j ·
(
t+s
n

)Ij+1 −
(
t+s
n

)j
1− t+s

n

−→
n→∞

0 .

The previous results imply that

P
(

Invj(M t+s
n

) = Ij

∣∣∣ Invj(M t
n

) = Ij ,
(
Invj(Mu)

)
0≤u< t

n

)
−→ 1 (10)

in probability, as n goes to infinity. Now, recall that, by assumption, for any j ∈ [n], the process
(Invj(Mt))t∈[0,∞) is increasing. This implies that, for Ij = 0, we have

P
(

Invj(M t+s
n

) = 0
∣∣∣ Invj(M t

n
) = 0,

(
Invj(Mu)

)
0≤u< t

n

)
(11)

= P
(

Invj(M t+s
n

) = 0
∣∣∣ Invj(M t

n
) = 0

)
=

P
(
Invj(M t+s

n
) = 0

)
P
(
Invj(M t

n
) = 0

)
=

1− t+s
n

1−
(
t+s
n

)j · 1−
(
t
n

)j
1− t

n

.

We will now combine (10) and (11) with (9) to obtain the convergence of the sequence of the first
jumping times of (Mt)t∈[0,∞). Fix k ≥ 0. For any σ ∈ Sn such that Inv(σ) ≤ k, by separating

15



according to whether Ij = 0 or Ij > 0, (9) and (11) tell us that

P
(
M t+s

n
= σ

∣∣∣M t
n

= σ, (Mu)0≤u< t
n

)
=

∏
j:Ij>0

P
(

Invj(M t+s
n

) = Ij

∣∣∣ Invj(M t
n

) = Ij ,
(
Invj(Mu)

)
0≤u< t

n

)

×
∏

j:Ij=0

1− t+s
n

1−
(
t+s
n

)j · 1−
(
t
n

)j
1− t

n

.

Note that |{j : Ij > 0}| ≤ Inv(σ) ≤ k. Combining this fact with the result of (10) and the assumption
that the different inversion numbers are independent processes, it follows that

∏
j:Ij>0

P
(

Invj(M t+s
n

) = Ij

∣∣∣ Invj(M t
n

) = Ij ,
(
Invj(Mu)

)
0≤u< t

n

)
1− t+s

n

1−( t+s
n )j ·

1−( t
n )j

1− t
n

= 1 + oP(1) .

This means that the previous result is

P
(
M t+s

n
= σ

∣∣∣M t
n

= σ, (Mu)u< t
n

)
=
(
1 + oP(1)

) n∏
j=1

1− t+s
n

1−
(
t+s
n

)j · 1−
(
t
n

)j
1− t

n

as n→∞, where for any fixed k ∈ N the oP(1) term is uniform over all permutations with Inv(σ) ≤ k.
Using the convergence result stated in (8), we know that

n∏
j=1

1−
(
t
n

)j
1−

(
t+s
n

)j −→ 1 ,

from which it follows that, for any k ∈ N, uniformly over permutations σ with Inv(σ) ≤ k,

P
(
M t+s

n
= σ

∣∣∣M t
n

= σ, (Mu)u< t
n

)
=
(
1 + oP(1)

)(1− t+s
n

1− t
n

)n
=
(
1 + oP(1)

)
e−s .

This exactly corresponds to saying that the first inter jumping times of the process are asymptotically
distributed as independent Exponential(1) random variables, proving the desired result.

3.3 Properties of the uniform Mallows processes
In this section we consider the uniform Mallows process (MU

t )t∈[0,∞) defined in Section 2.2.2. For
the rest of this section, drop the superscript U on MU and write UMP instead of uniform Mallows
process.

Recall from Definition 2.6 that the UMP is defined using a set of n uniform random variables. This
means that this process is generated from a well-controlled amount of randomness and it is naturally
interesting to wonder when all the information can be retrieved from the evolution of the process.

Given an occurrence of the UMP (Mt)t∈[0,∞) and a random time T , say that Uj is retrievable with
respect to (Mt)t∈[0,∞) and T if the random variable Uj is measurable with respect to the σ-algebra
σ(T, (Mt)t∈[0,T ]). Note that, once one of the component processes (Ij(t))t∈[0,∞) jumps, it is possible
to deduce the value of Uj that generated this process (except for j = 1 since I1(t) = 0 for all t). This
remark implies that U2, . . . , Un are retrievable with respect to (Mt)t∈[0,∞) and T(n

2) = inf{t > 0 :
Inv(Mt) =

(
n
2
)
}. We are now interested in answering the following two questions:

• What is the minimal time such that U2, . . . , Un are all retrievable?

• Given a deterministic time t ∈ [0,∞), how many of the variables U2, . . . , Un are retrievable?
We answer these two questions in the next two sections.
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3.3.1 Time of full information

The following proposition describes the minimal full retrieval time of the UMP.

Proposition 3.1. Let (Mt)t∈[0,∞) be the UMP. Then there exists anMt-stopping time TU such that
U2, . . . , Un are retrievable with respect to (Mt)t∈[0,∞) and TU , and such that, for any T such that
T < TU , not all U2, . . . , Un are retrievable with respect to (Mt)t∈[0,∞) and T . Moreover, there exists
a subset AU ⊂ Sn such that

TU = inf
{
t ∈ [0,∞) :Mt ∈ AU

}
.

Finally, we have that

lim
t→∞

tP(TU > t) = 1 ,

which implies that E[TU ] =∞.

Proof. By using that Ui is retrievable if and only if fi(t;Ui) ≥ 1, the definition of AU simply corresponds
to

AU =
{
σ : Φ−1(σ)j ≥ 1, ∀2 ≤ j ≤ n

}
= Φ

({
I = (I1, . . . , In) ∈ En : Ij ≥ 1, ∀2 ≤ j ≤ n

})
.

This proves the first two statements of the proposition.
For the third and last statement, by the definition of AU we have

P
(
TU < t

)
= P

(
fj(t;Uj) ≥ 1,∀2 ≤ j ≤ n

)
=

n∏
j=2

(
1− 1∑j−1

`=0 t
`

)
.

It follows that, as t tends to infinity (with n being fixed), we have

P
(
TU < t

)
=

n∏
j=2

(
1− (1 + o(1)) 1

tj−1

)
= 1− 1

t
+ o

(
1
t

)
.

This proves that tP(TU > t) = 1 + o(1) and concludes the proof of this proposition.

3.3.2 Amount of information

In the previous section, we consider when does the UMP become completely deterministic and we
show that there exists a specific time at which we have all the information on this process. However,
we also prove that the expected time to have all the information on this process is infinite. In this
section, we consider the converse approach and ask what amount of information we have access to by
a given time.

Fix t ∈ (0,∞) and let It be the amount of information of the UMP at time t defined by

It = 1
n
×
∣∣∣{j ∈ [n] : Uj is retrievable with respect to (Ms)s∈[0,∞) and t

}∣∣∣ .
The fraction 1

n is used here so that It ∈ [0, 1]. The following proposition characterizes the behaviour
of It for different regimes and, in particular, allows us to see a strong change of behaviour at t = 1.
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Theorem 3.2. For any fixed t ∈ [0,∞), as n tends to infinity, we have

It −→ t ∧ 1 ,

almost surely. Moreover, its fluctuations around its asymptotic value are given by the following for-
mulas. For t ∈ [0, 1), we have that(√

n(It − t)
)
t∈[0,1)

d−→ (Wt)t∈[0,1) ,

where (Wt)t∈[0,1) is the restriction to [0, 1) of a standard Brownian bridge and the convergence is with
respect to the topology of uniform convergence on C([0, 1)). For t = 1, the following central limit
theorem holds

n√
logn

(
I1 − 1 + logn

n

)
d−→ Normal(0, 1) .

Finally, for t > 1, then (
n(1− It)

)
t>1

d−→ (Xt)t>1 ,

where (Xt)t>1 is a decreasing process with moment generating function

E[uXt ] =
∞∏
k=1

(
1 + (u− 1) t− 1

tk − 1

)
.

Proof. All the results of this proposition will strongly depend on the decomposition

It = 1
n

n∑
j=1

Xj(t) ,

where Xj(t) is the indicator that Uj is retrievable from (Mt)t∈[0,∞) and t. Note that the different
random variables (Xj(t))j∈[n] are independent Bernoulli random variables with

P
(
Xj(t) = 0

)
= 1− P

(
Xj(t) = 1

)
= 1∑j−1

`=0 t
`
. (12)

For any t ∈ [0,∞), since (Xj(t))j∈[n] are all bounded by 1, the strong law of large numbers
applies [16] and yields that It almost surely converges to its asymptotic expected value. Furthermore,
we have that

E[It] = 1
n

n∑
j=1

E[Xj(t)] = 1
n

n∑
j=1

[
1− 1∑j−1

`=0 t
`

]
.

For t = 1, this gives us that

E[I1] = 1− 1
n

n∑
j=1

1
j

= 1− logn
n

+O

(
1
n

)
= 1− o(1) , (13)

Moreover, since (It)t∈[0,∞) is increasing in t and takes values in [0, 1], it follows that E[It] = 1− o(1)
for t > 1. Finally, for t < 1, we have

E[It] = 1
n

n∑
j=1

[
1− 1− t

1− tj

]
= 1
n

nt− n∑
j=1

tj(1− t)
1− tj

 = t+O

(
1
n

)
= t+ o(1) ;
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together, these facts establish the first statement of the proposition.
For the second statement, we show that, for any s < 1, (

√
n(It− t))t∈[0,s] converges in distribution

to the restriction to [0, s] of a Brownian bridge. Fix s ∈ (0, 1). First of all, using that t 7→ Xj(t) is
increasing, along with (12), it follows that

(Xj(t))t∈[0,s]
d=
(

min
{

1,
⌊
U

1− tj
1− t

⌋})
t∈[0,s]

,

where U is a Uniform([0, 1]) random variable. Since the variables (Xj(t))t∈[0,s] are independent over
j ∈ [n], fixing a set of n independent Uniform([0, 1]) random variables (Ũ1, . . . , Ũn), we then have

(It)t∈[0,s]
d= (Ĩt)t∈[0,s] :=

 1
n

n∑
j=1

min
{

1,
⌊
Ũj

1− tj
1− t

⌋}
t∈[0,s]

. (14)

The relation between (U1, . . . , Un) in the definition of the UMP and (Ũ1, . . . , Ũn) here does not need
to be specified; however it is worth noting that they are not the same variables. Consider now the
process

(J̃t)t∈[0,s] :=

 1
n

n∑
j=1

min
{

1,
⌊
Ũj

1
1− t

⌋}
t∈[0,s]

. (15)

and note that, since t ≤ s < 1, we have

min
{

1,
⌊
Ũj

1
1− t

⌋}
= 11−Ũj≤t .

This means that (J̃t)t∈[0,s] is the empirical distribution function of (1 − Ũ1, . . . , 1 − Ũn) restricted to
[0, s], and from [2, Corollary 20.14], we know that (

√
n(J̃t − t))t∈[0,s] converges to the restriction to

[0, s] of a standard Brownian bridge (in fact the convergence occurs on [0, 1], but we are only interested
in its behaviour on [0, s]). Hence, it only remains to relate Ĩ and J̃ .

Using that 1−tj
1−t ≤

1
1−t , we have

min
{

1,
⌊
Ũj

1− tj
1− t

⌋}
6= min

{
1,
⌊
Ũj

1
1− t

⌋}
⇐⇒ min

{
1,
⌊
Ũj

1− tj
1− t

⌋}
= 0 and min

{
1,
⌊
Ũj

1
1− t

⌋}
= 1

⇐⇒ Ũj
1− tj
1− t < 1 and Ũj

1
1− t ≥ 1

⇐⇒ Ũj ∈
[
1− t, 1− t

1− tj

)
.

Now, let (Nt)t∈[0,s] be the random process defined by

Nt : =
∣∣∣∣{j ∈ [n] : min

{
1,
⌊
Ũj

1− tj
1− t

⌋}
6= min

{
1,
⌊
Ũj

1
1− t

⌋}}∣∣∣∣
=
∣∣∣∣{j ∈ [n] : Ũj ∈

[
1− t, 1− t

1− tj

)}∣∣∣∣
and let N := maxt∈[0,s] Nt. The definition of Nt along with the definition of (Ĩt)t∈[0,s] and (J̃t)t∈[0,s]
in (14) and (15) immediately imply that ∣∣Ĩt − J̃t∣∣ ≤ Nt

n
, (16)
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which also means that N is a uniform bound over the difference between the two processes (Ĩt)t∈[0,s]
and (J̃t)t∈[0,s]. We now focus on providing an upper tail bound on N .

Before providing the upper tail bound on N , we claim that

N = max
i∈[n]:1−Ũi≤s

{
N1−Ũi

}
. (17)

To see this, fix t ∈ [0, s] and let δ > 0 be such that [1 − (t + δ), 1 − t) ∩ {Ũ1, . . . , Ũn} = ∅. Since the
map u 7→ (1− u)/(1− uj) is decreasing for any j ∈ [n], if Ũj ∈ [1− (t+ δ), (1− (t+ δ))/(1− (t+ δ)j)),
then Ũj ∈ [1− t, (1− t)/(1− tj)]. Thus{

j ∈ [n] : Ũj ∈
[
1− (t+ δ), 1− (t+ δ)

1− (t+ δ)j

)}
⊆
{
j ∈ [n] : Ũj ∈

[
1− t, 1− t

1− tj

)}
and so Nt+δ ≤ Nt. Since t ∈ [0, s] was arbitrary, this proves that t 7→ Nt only has increments at times
{1− Ũ1, . . . , 1− Ũn}, establishing (17).

Thanks to (17) and the definition of Nt, we now have

N = max
i∈[n]:1−Ũi≤s

∣∣∣∣{j ∈ [n] : Ũj ∈
[
Ũi,

Ũi

1− (1− Ũi)j

)}∣∣∣∣ .
Using that

1− t
1− tj = 1− t+ tj(1− t)

1− tj ≤ 1− t+ sj

for any t ≤ s < 1, it follows that

Ũi

1− (1− Ũi)j
≤ Ũi + sj

for any 1− Ũi ≤ s, and then

N ≤ max
i∈[n]:1−Ũi≤s

∣∣∣{j ∈ [n] : Ũj ∈
[
Ũi, Ũi + sj

)}∣∣∣ ≤ max
i∈[n]

∣∣∣{j ∈ [n] : Ũj ∈
[
Ũi, Ũi + sj

)}∣∣∣ .
Fix now k ∈ N and use the previous bound to see that

P(N ≥ k) ≤
n∑
i=1

P

 ∑
j∈[n]:j 6=i

1{Ũj∈[Ui,Ui+sj)} ≥ k − 1

 (18)

=
n∑
i=1

P

 ∑
j∈[n]:j 6=i

1{Ũj<sj} ≥ k − 1

 ,

where the second inequality uses that the variables (Ũj)j∈[n] are independent Uniform([0, 1]). More-
over, for any i ∈ [n], by Markov’s inequality we have

P

 ∑
j∈[n]:j 6=i

1{Ũj<sj} ≥ k − 1

 = P

exp

 ∑
j∈[n]:j 6=i

1{Ũj<sj}

 ≥ ek−1

 (19)

≤ e−k+1E

exp

 ∑
j∈[n]:j 6=i

1{Ũj<sj}


= e−k+1

∏
j∈[n]:j 6=i

(
1 + (e− 1)sj

)
≤ exp

(
−k + 1 + (e− 1) 1

1− s

)
,
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where the last inequality follows from convexity of the exponential and by taking the product over all
j ≥ 0 rather than over j ∈ [n] \ {i}. Combining (18) and (19), we obtain

P(N ≥ k) ≤ exp
(

logn− k +
[
1 + (e− 1) 1

1− s

])
, (20)

which we now use to conclude the convergence of (
√
n(It − t))t∈[0,s] to the Brownian bridge.

Using the definition of Ĩ and J̃ from (14) and (15) along with (16), we have that

sup
t∈[0,s]

∣∣Ĩs − J̃t∣∣ = 1
n
N ,

from which (20) tells us that

P

(
sup
t∈[0,s]

∣∣Ĩt − J̃t∣∣ ≥ 2 logn
n

)
≤ Cs

n
,

where Cs = exp(1 + (e− 1)/(1− s)). Moreover, we already showed that (
√
n(J̃t − t))t∈[0,s] converges

to the restriction to [0, s] of a standard Brownian bridge. The desired convergence now simply follows
since (It)t∈[0,s]

d= (Ĩt)t∈[0,s].
Consider now the case t = 1. We already showed that E[I1] = 1− logn/n+O(1/n). Moreover, we

have

Var [I1] = 1
n2 Var

 n∑
j=1

Xj(1)

 = 1
n2

n∑
j=1

Var[Xj(1)] ,

and using that Xj(1) is a Bernoulli((j − 1)/j), it follows that

Var [I1] = 1
n2

n∑
j=1

j − 1
j2 =

(
1 + o(1)

) logn
n2

Since Xj(t) ≤ 1, the conditions of the Lindeberg-Feller theorem [14, Theorem 3.4.10] are met, and it
follows that

I1 − E[I1]√
Var(I1)

d−→ Normal(0, 1) .

This convergence combined with the previous asymptotic approximation of Var[I1] and (13) exactly
corresponds to the desired result.

For the last assertion of the proposition, using once again the distribution of Xj(t), for t > 1 we
have that

E
[
eiun(1−It)

]
= eiun

n∏
j=1

[
1 + (e−iu − 1)

(
1− t− 1

tj − 1

)]

=
n∏
j=1

[
eiu + (1− eiu)

(
1− t− 1

tj − 1

)]

=
n∏
j=1

[
1 + (eiu − 1) t− 1

tj − 1

]
,

and the final product converges to the desired function as n goes to infinity. To conclude this proof,
simply note that (It)t>1 is increasing to see that (Xt)t>1 is decreasing, corresponding to the last
statement of the proposition.
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4 Conclusion and open questions
This work introduces Mallows processes and describes two natural ways to generate regular Mallows
processes. However, many properties of these processes remain to be proven; we now state some
possible directions for future work on Mallows processes and their properties.

4.1 Graph structure
Theorem 1.2 states that T a ⊆ 〈GM〉 ⊆ T for any smooth Mallows process M, and that 〈GM〉 = T
wheneverM is regular. The proof of the second statement strongly relies on the independent inversion
property ofM when it is regular, and we do not necessarily expect to have 〈GM〉 = T if we drop this
assumption.

Conjecture 1. For any n ≥ 3, there exists a smooth Mallows processM = (Mt)t∈[0,∞) such that

〈GM〉 ( T .

Furthermore, when n = 3 (the first non-trivial case), it is not hard to see that it is even possible to
defineM so that 〈GM〉 = T a. Whether this result can be generalized to any n ≥ 3 or not is unclear,
leading to the following question.

Question 2. What is the value N ∈ N∪{∞} such that, for any n < N , there exists a smooth Mallows
processM = (Mt)t∈[0,∞) taking values in Sn with

〈GM〉 = T a ,

and for any n ≥ N , any smooth Mallows processM = (Mt)t∈[0,∞) taking values in Sn has the property
that

T a ( 〈GM〉 .

Note that, in this question, we allow for N =∞, which would mean that for any n, there exists a
smooth Mallows processM with 〈GM〉 = T a. The fact that such N exists can be verified as follows.
Fix n ∈ N and consider a smooth Mallows process M = (Mt)t∈[0,∞) taking values in Sn such that
〈GM〉 = T a. Then define a Mallows process M̃ = (M̃t)t∈[0,∞) taking values in Sn−1 by

M̃t(i) =
{
Mt(i) if i <M−1

t (n)
Mt(i+ 1) ifM−1

t (n) ≤ i < n− 1 .

In other words, if Mt = (s1, . . . , sj−1, n, sj+1, . . . , sn), then M̃t = (s1, . . . , sj−1, sj+1, . . . , sn), which
simply corresponds to removing the value n in the permutation Mt. It is then easy to verify that
(M̃t)t∈[0,∞) is a smooth Mallows process with 〈GM̃〉 = T a.

4.2 Markov processes and Markov chains
The birth Mallows process is the unique regular Mallows process that is also a Markov process. A
natural question regarding this process is whether its corresponding jumping process (M̃k)0≤k≤(n

2) =
(MTk

)0≤k≤(n
2) is a Markov chain. Since the times of jump of the birth Mallows process give strong

indications regarding the likelihood of follow-up jumps, we do not expect this jumping process to have
the Markov property. Computations for small values of n seem to confirm our conjecture but we do
not have a formal proof.

Conjecture 3. For any n ≥ 4, the jumping process of the birth Mallows process is not a Markov
chain.
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Assuming this conjecture holds, by the uniqueness of the birth Mallows process, it is impossible
to have a regular Mallows process which is a Markov process and whose jumping process is a Markov
chain. However, the existence of Mallows processes that are Markov processes and whose jumping
processes are Markov chains remains open if we drop some assumptions. For example, computations
on small values of n seem to show that there exist smooth (but not regular) Mallows processes with
this property. Moreover, computations led us to believe that such processes could be chosen with
interesting graph structure.

Conjecture 4. For any n ≥ 4, there exist smooth Mallows processes M = (Mt)t∈[0,∞) such that
(Mt)t∈[0,∞) is a Markov process and such that (M̃k)0≤k≤(n

2) is a Markov chain. Moreover, any such
process has the property that

T a ( 〈GM〉 ⊆ T .

Finally, there exist such processes with the property that 〈GM〉 ( T .

4.3 Another Gaussian process
In Section 2.2.2, we studied properties of the uniform Mallows process and showed in Theorem 3.2
that there was an embedded, asymptotically Gaussian process related to the amount of information of
this process (more precisely a Brownian bridge).

In parallel, the birth Mallows process also appears to have a natural associated asymptotically
Gaussian process, obtained by an appropriate normalization of the number of jumps. More precisely,
let the number of jumps of (Mt)t∈[0,∞) be the process (Jt)t∈[0,∞) defined by Jt = |{k ≤

(
n
2
)

: Tk ≤ t}|.
Then, by applying the Lindeberg-Feller theorem [14, Theorem 3.4.10], it is straightforward to prove
the following fact.

Fact 4.1. As n goes to infinity, for any t ∈ [0, 1), we have that

1√
n

[
(1− t)Jt − nt

]
d−→ Normal(0, t) .

This suggests that ([(1 − t)Jt − nt]/
√
n)t∈[0,1) converges to some Gaussian process. Proving that

this process indeed converges, and characterizing its distribution remains open.

Conjecture 5. As n goes to infinity we have that(
1√
n

[
(1− t)Jt − nt

])
t∈[0,1)

d−→ (Gt)t∈[0,1) ,

where (Gt)t∈[0,1) is a centred Gaussian and Markovian process.

4.4 Relation to random sorting networks
From the results of Theorem 1.2, we know that any smooth Mallows processM = (Mt)t∈[0,∞) tran-
sitions using transpositions. This means that for any (Mt)t∈[0,∞), there exists τ1, . . . , τN ∈ T where
N =

(
n
2
)
such thatMTk

= τ1 · . . . · τk, which implies that τ1 · . . . · τN = (n, n− 1, . . . , 1). This naturally
suggests an investigation of the relation between Mallows processes and sorting networks.

Sorting networks are sequences τ1, . . . , τN ∈ T a such that τ1 · . . . · τN = (n, n − 1, . . . , 1). They
were first considered by Stanley [32], who managed to give an exact formula for the number of such
sorting networks of size n. Since then, further work on proving this formula through diverse methods
was developed [15, 26], and these works recently led several authors [3, 5, 11, 12] to study properties
of uniformly sampled random sorting networks. In these works, various results of random sorting
networks are proven, such as the asymptotic distribution of τ1, a convergence for the scaled swap
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process, and properties of the trajectories (τ1 · . . . · τk(i))0≤k≤N as k varies from 0 to N and for a
fixed i ∈ [n]. Mallows processes do not directly correspond to sorting networks, since they might use
transpositions in T \T a, but many of the properties of the sorting networks that have previously been
studied have natural analogues for Mallows processes and it would be natural to investigate these in
more detail.

Acknowledgements
BC wishes to thank his supervisor, Louigi Addario-Berry, for his help with the general structure and
presentation of this paper, along with Orphée Collin for early discussions on the problem. During the
preparation of this research, BC was supported by an ISM scholarship.

References
[1] L. Addario-Berry and B. Corsini, The height of Mallows trees, The Annals of Probability,

49 (2021), pp. 2220–2271.

[2] D. J. Aldous, Exchangeability and related topics, in École d’Été de Probabilités de Saint-Flour
XIII—1983, Springer, 1985, pp. 1–198.

[3] O. Angel, D. Dauvergne, A. E. Holroyd, and B. Virág, The local limit of random sorting
networks, in Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 55, Institut
Henri Poincaré, 2019, pp. 412–440.

[4] O. Angel, A. E. Holroyd, T. Hutchcroft, and A. Levy, Mallows permutations as stable
matchings, Canadian Journal of Mathematics, 73 (2021), pp. 1531–1555.

[5] O. Angel, A. E. Holroyd, D. Romik, and B. Virág, Random sorting networks, Advances
in Mathematics, 215 (2007), pp. 839–868.

[6] R. Basu and N. Bhatnagar, Limit theorems for longest monotone subsequences in random
Mallows permutations, in Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 53,
Institut Henri Poincaré, 2017, pp. 1934–1951.

[7] I. Benjamini, N. Berger, C. Hoffman, and E. Mossel, Mixing times of the biased card shuf-
fling and the asymmetric exclusion process, Transactions of the American Mathematical Society,
357 (2005), pp. 3013–3029.

[8] N. Bhatnagar and R. Peled, Lengths of monotone subsequences in a Mallows permutation,
Probability Theory and Related Fields, 161 (2015), pp. 719–780.

[9] S. Corteel, M. A. Martinez, C. D. Savage, and M. Weselcouch, Patterns in inversion
sequences i, Discrete Mathematics & Theoretical Computer Science, 18 (2016).

[10] H. Crane, S. DeSalvo, and S. Elizalde, The probability of avoiding consecutive patterns in
the Mallows distribution, Random Structures & Algorithms, 53 (2018), pp. 417–447.

[11] D. Dauvergne, The archimedean limit of random sorting networks, Journal of the American
Mathematical Society, (2021).

[12] D. Dauvergne and B. Virág, Circular support in random sorting networks, Transactions of
the American Mathematical Society, 373 (2020), pp. 1529–1553.

24



[13] P. Diaconis and A. Ram, Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke
algebra techniques, Michigan Math. J., 48 (2000), pp. 157–190. Dedicated to William Fulton on
the occasion of his 60th birthday.

[14] R. Durrett, Probability: theory and examples, vol. 49, Cambridge university press, 2019.

[15] P. Edelman and C. Greene, Balanced tableaux, Advances in Mathematics, 63 (1987), pp. 42–
99.

[16] N. Etemadi, On the laws of large numbers for nonnegative random variables, Journal of Multi-
variate Analysis, 13 (1983), pp. 187–193.

[17] X. Fang, H. L. Gan, S. Holmes, H. Huang, E. Peköz, A. Röllin, and W. Tang, Arcsine
laws for random walks generated from random permutations with applications to genomics, Journal
of Applied Probability, 58 (2021), pp. 851–867.

[18] A. Gladkich and R. Peled, On the cycle structure of Mallows permutations, The Annals of
Probability, 46 (2018), pp. 1114–1169.

[19] A. Gnedin and G. Olshanski, q-Exchangeability via quasi-invariance, The Annals of Proba-
bility, 38 (2010), pp. 2103–2135.

[20] , The two-sided infinite extension of the Mallows model for random permutations, Advances
in Applied Mathematics, 48 (2012), pp. 615–639.

[21] G. Grimmett and D. Stirzaker, Probability and random processes, Oxford university press,
2020.

[22] J. He, A central limit theorem for descents of a mallows permutation and its inverse, in Annales
de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 58, Institut Henri Poincaré, 2022,
pp. 667–694.

[23] A. E. Holroyd, T. Hutchcroft, and A. Levy, Mallows permutations and finite dependence,
The Annals of Probability, 48 (2020), pp. 343–379.

[24] K. Jin, The limit of the empirical measure of the product of two independent Mallows permuta-
tions, Journal of Theoretical Probability, 32 (2019), pp. 1688–1728.

[25] C.-A. Laisant, Sur la numération factorielle, application aux permutations, Bulletin de la Société
Mathématique de France, 16 (1888), pp. 176–183.

[26] A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de
l’anneau de Grothendieck d’une variété de drapeaux, CR Acad. Sci. Paris Sér. I Math, 295 (1982),
pp. 629–633.

[27] D. H. Lehmer, Teaching combinatorial tricks to a computer, in Proc. Sympos. Appl. Math.
Combinatorial Analysis, vol. 10, 1960, pp. 179–193.

[28] C. L. Mallows, Non-null ranking models. I, Biometrika, 44 (1957), pp. 114–130.

[29] C. Mueller and S. Starr, The length of the longest increasing subsequence of a random Mal-
lows permutation, Journal of Theoretical Probability, 26 (2013), pp. 514–540.

[30] S. Mukherjee, Fixed points and cycle structure of random permutations, Electronic Journal of
Probability, 21 (2016).

[31] R. G. Pinsky, Permutations avoiding a pattern of length three under mallows distributions,
Random Structures & Algorithms, 58 (2021), pp. 676–690.

25



[32] R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, Euro-
pean Journal of Combinatorics, 5 (1984), pp. 359–372.

[33] S. Starr, Thermodynamic limit for the Mallows model on Sn, Journal of mathematical physics,
50 (2009), p. 095208.

[34] S. Starr and M. Walters, Phase uniqueness for the Mallows measure on permutations, Journal
of Mathematical Physics, 59 (2018), p. 063301.

[35] W. Tang, Mallows ranking models: maximum likelihood estimate and regeneration, in Interna-
tional Conference on Machine Learning, PMLR, 2019, pp. 6125–6134.

26


	Introduction
	Related work

	Constructing regular Mallows process
	An important bijection
	Two regular Mallows processes
	Birth Mallows process
	Uniform Mallows process


	Properties of regular Mallows processes
	Transition graph
	Jumping times
	Properties of the uniform Mallows processes
	Time of full information
	Amount of information


	Conclusion and open questions
	Graph structure
	Markov processes and Markov chains
	Another Gaussian process
	Relation to random sorting networks


