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Abstract. We consider a family of local search algorithms for the minimum-weight spanning tree,
indexed by a parameter ρ. One step of the local search corresponds to replacing a connected induced
subgraph of the current candidate graph whose total weight is at most ρ by the minimum spanning
tree (MST) on the same vertex set. Fix a non-negative random variable X, and consider this local
search problem on the complete graph Kn with independent X-distributed edge weights. Under
rather weak conditions on the distribution of X, we determine a threshold value ρ∗ such that the
following holds. If the starting graph (the “initial candidate MST”) is independent of the edge
weights, then if ρ > ρ∗ local search can construct the MST with high probability (tending to 1 as
n → ∞), whereas if ρ < ρ∗ it cannot with high probability.

1. Introduction

Local search is the name for an optimization paradigm in which optimal or near-optimal solutions are
sought algorithmically, via sequential improvements which are “local” in that at each step, the search
space consists only of neighbours (in some sense) of the current solution. Well-known algorithmic
examples of this paradigm include simulated annealing, hill climbing, and the Metropolis-Hasting
algorithm.

A recent line of research considers the behaviour of local search on smoothed optimization problems,
in which the input is either fully random or is a random perturbation of a fixed input. The goal in
this setting is to characterize the running time of local search and the quality of its output. Problems
approached in this vein include max-cut [3, 4, 6], for which the allowed “local” improvements consist
of moving a single vertex; max-2CSP and the binary function optimization problem [5], for which the
allowed local improvements are bit flips; and Euclidean TSP [8], where the allowed local improvements
consist of replacing edge pairs uv,wx with pairs uw, vx (when the result is still a tour).

In the current work, we analyze local search for the random minimum spanning tree problem,
one of the first and foundational problems in combinatorial optimization. We now briefly describe
our results (for more precise statements see Section 1.1, below). As input to the problem, we take
the randomly-weighted complete graph Kn = (Kn,X), where X = (Xe, e ∈ E(Kn)) are independent
copies of a random variable X, and an arbitrary starting graph H0, which we aim to transform into
the minimum-weight spanning tree MST. We fix a threshold weight ρ > 0; at step k ≥ 0, a local
improvement consists of choosing a connected induced subgraph of the current MST candidate Hk

whose current total weight is at most ρ, and replacing it by the minimum weight spanning tree on the
same vertex set.

Suppose that X is non-negative and has a density f : [0,∞)→ [0,∞) which is continuous at 0 and
satisfies f(0) > 0. Then writing ρ∗ = sup{x : P(X > x) > 0}, we prove that if ρ > ρ∗ then there exist
local search paths which output the MST, whereas if ρ < ρ∗ then local search cannot reach the MST
(and, indeed, with high probability will only achieve an approximation ratio of order Θ(n)).

1.1. Detailed statement of the results. Let G = (G,w) = (V,E,w) be a finite weighted connected
graph, where G = (V,E) is a graph and w : E → (0,∞) are edge weights; set V(G) = V(G) = V and
E(G) = E(G) = E. For a subgraph H of G write w(H) =

∑
e∈E(H) w(e) for its weight. A minimum

spanning tree (MST) of G is a spanning tree T of G which minimizes w(T ) among all spanning trees of
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G. There is a unique MST provided all edge weights are distinct; we hereafter restrict our attention to
weighted graphs G where all edge weights are distinct (and more strongly where the edge weights are
linearly independent over R); we call such graphs generic. For a generic weighted graph G, we write
MST(G) for the unique minimum spanning tree of G.

For a weighted graph G = (V,E,w) and a set S ⊂ V , write G[S] for the induced subgraph
G[S] = (S,E|S×S) and G[S] for the induced weighted subgraph G[S] = (G[S], w|E(G[S])). Now,
given a spanning subgraph H of G, define Φ(H,S) = ΦG(H,S) as follows. If H[S] is connected then
let Φ(H,S) be the spanning subgraph with edge set (E(H) \ E(H[S])) ∪ E(MST(G[S])); if H[S] is
not connected then let Φ(H,S) = H. In words, to form Φ(H,S) from H, we replace H[S] by the
minimum-weight spanning tree of G[S], unless H[S] is not connected.

Now suppose we are given a finite weighted connected graph G = (V,E,w), a spanning subgraph
H of G, and a sequence S = (Si, 1 ≤ i ≤ m) of subsets of V . Define a sequence of spanning subgraphs
(Hi, 0 ≤ i ≤ m) as follows. Set H0 = H, and for 1 ≤ i ≤ m let Hi = ΦG(Hi−1, Si). Using the previous
definition of Φ, this simply corresponds to sequentially replacing the subgraph of Hi−1 on Si by its
corresponding minimum spanning tree (assuming Hi−1 is connected). We refer to S as an optimizing
sequence for the pair (G, H), and call (Hi, 0 ≤ i ≤ m) the subgraph sequence corresponding to S. We
say S is an MST sequence for (G, H) if the final spanning subgraph Hm is the MST of G.

The weight of step i of the sequence S is defined as

wt(S, i) = wt(G, H, S, i) := w
(
Hi−1[Si]

)
=

∑
e∈E(Hi−1[Si])

w(e) ,

and the weight of the whole sequence is the maximal weight of a single step:

wt(S) = wt(G, H, S) := max
{

wt(S, i) : 1 ≤ i ≤ m
}
.

The cost of the pair (G, H) is defined as

cost(G, H) := min
{

wt(S) : S is an MST sequence for (G, H)
}
.

The following theorem is the main result of the current work. Write Kn for the complete graph with
vertex set [n] = {1, . . . , n}, and Kn = (Kn,X) for the randomly weighted complete graph, where
X = (Xe, e ∈ E(Kn)) are independent Uniform[0, 1] random variables. If S = (S1, . . . , Sm) is an
optimizing sequence for (Kn, Hn) then we write Hn,0 = Hn and Hn,i = ΦKn(Hn,i−1, Si) for 1 ≤ i ≤ m.
Finally, we say a sequence (En, n ≥ 1) of events occurs with high probability if P(En)→ 1 as n→∞.

Theorem 1.1. Fix any sequence (Hn, n ≥ 1) of connected graphs with Hn being a spanning subgraph
of Kn. Then for any ε > 0, as n→∞,

(a) with high probability there exists an MST sequence S for (Kn, Hn) with wt(S) ≤ 1 + ε, and
(b) there exists δ > 0 such that with high probability, given any optimizing sequence S = (S1, . . . , Sm)

for (Kn, Hn) with wt(S) ≤ 1 − ε, the final spanning subgraph Hn,m has weight w(Hn,m) ≥
δnw(MST(Kn)).

In particular, cost(Kn, Hn) P−→ 1 as n→∞.

We discuss possible refinements of and extensions to Theorem 1.1 in the conclusion, Section 4. We
also explain in that section how to extend Theorem 1.1 to more general edge weight distributions than
Uniform[0, 1], as described just before Section 1.1.

1.2. Overview of the proof. In this section, we give an overview of the proof of Theorem 1.1, while
postponing the proofs of the more technical aspects to Sections 2 and 3 and Appendix A. The lower
bound of Theorem 1.1 is straightforward, so we provide it in full detail immediately.
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Lower bound of Theorem 1.1. Fix ε > 0, and let En,ε = {e ∈ E(Hn) : Xe > 1 − ε}. The set
En,ε is a binomial random subset of E(Hn) in which each edge is present with probability ε, so
P(|En,ε| ≥ εn/2)→ 1.

Note that, for any edge e = uv ∈ E(Hn) \ E(MST(Kn)), and any optimizing sequence S =
(S1, . . . , Sm) for (Kn, Hn), if there is no set Si with u, v ∈ Si, then e ∈ Hn,m. It follows that for
any optimizing sequence S with wt(S) ≤ 1− ε, the final spanning subgraph Hn,m has En,ε ⊂ E(Hn,m)
and so on the event that |En,ε| ≥ εn/2 we have

w(Hn,m) ≥ n(1− ε)ε/2.
To conclude, we use that w(MST(Kn)) → ζ(3) in probability [7]. It follows that with probability
tending to 1, both |En,ε| ≥ εn/2 and w(MST(Kn)) ≤ 2ζ(3), and when both these events occur we
have

w(Hn,m) ≥ n(1− ε)ε/2 ≥ w(MST(Kn)) · n(1− ε)ε/(4ζ(3)) .
Since this holds for any optimizing sequence with weight at most 1 − ε, the result follows by taking
δ = (1− ε)ε/(4ζ(3)).
Upper bound of Theorem 1.1. We now turn to the key ideas underlying our proof of the upper bound.
We begin with a deterministic fact.

Fact 1.2. Any connected graph H with vertex set [n] contains an induced subgraph with at least
1
2
√

log2 n vertices which is either a clique, a star, or a path.

We prove the fact immediately since the proof is very short; but its proof can be skipped without
consequence for the reader’s understanding of what follows.

Proof of Fact 1.2. The result is trivial if n ≤ 16 so assume n > 16. Let m = n1/
√

log2 n ≥ 4. If H
has maximum degree less than m then it has diameter at least

√
log2 n− 1 ≥ 1

2
√

log2 n so it contains
a path of length at least 1

2
√

log2 n. On the other hand, if H has maximum degree at least m then
let v be a vertex of H with degree at least m and let Nv be the set of neighbours of v in H. By
Ramsey’s theorem, and more concretely the diagonal Ramsey upper bound R(k, k) < 4k, the graph
H[Nv] contains a set S of size at least

1
2 log2 m = 1

2
log2 n√
log2 n

= 1
2
√

log2 n

such that H[S] is either a clique or an independent set. If H[S] is a clique then we are done, and if
H[S] is an independent set then H[S ∪ {v}] is a star of size |S|+ 1 so we are again done. �

Fact 1.2 proves to be useful together with the following special case of the upper bound of Theo-
rem 1.1, whose proof appears in Section 3.

Proposition 1.3. Fix a sequence (Hn, n ≥ 1) of connected graphs such that, for all n, Hn is either a
clique, a star, or a path with V(Hn) = [n]. Then for all ε > 0, with high probability cost(Kn, Hn) ≤
1 + ε.

We combine Proposition 1.3 with Fact 1.2 as follows. First, choose Vn ⊂ [n] with |Vn| ≥ 1
2
√

logn
such that Hn[Vn] is a clique, a star or a path, and consider Kn[Vn], the restriction of the weighted
complete graph Kn to Vn. Let S′n = (S′0, . . . , S′m) be an MST sequence for (Kn[Vn], Hn[Vn]) of minimum
cost. Now consider using the sequence S′n as an optimizing sequence for (Kn, Hn). In other words,
we set Hn,i = ΦKn

(Hn,i−1, S
′
i) for 1 ≤ i ≤ m. Then Hn,m = ΦKn

(H0, Vn), which is to say that
Hn,m consists of Hn with Hn[Vn] replaced by MST(Kn[Vn]). Moreover, by Proposition 1.3, wt(S′n) =
wt(Kn, Hn,S′n) = wt(Kn[Vn], Hn[Vn],S′n) P−→ 1; so with high probability we have transformed a “large”
(i.e. whose size is ≥ 1

2
√

logn) subgraph of Hn into its minimum spanning tree, using an optimizing
sequence of cost at most 1 + oP(1).

The next step is to apply a procedure we call the eating algorithm, described in Section 2. This
algorithm allows us to bound the minimum cost of an MST sequence in terms of the weighted diameters
of minimum spanning trees of a growing sequence of induced subgraphs of the input graph, with each
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graph in the sequence containing one more vertex than its predecessor. In the setting of Theorem 1.1,
it allows us to find an MST sequence with weight at most 1 + oP(1) provided that the starting graph
already contains a large subgraph on which it is equal to the MST. The key result of our analysis of
the eating algorithm is summarized in the following proposition.

Proposition 1.4. Fix a sequence (Hn, n ≥ 1) of connected graphs with V(Hn) = [n]. Fix any sequence
of sets (Vn, n ≥ 1) such that Vn ⊂ [n], |Vn| → ∞ as n → ∞, and Hn[Vn] is connected for all n ≥ 1.
Let H ′n = ΦKn

(Hn, Vn), so that H ′n[Vn] = MST(Kn[Vn]). Then for all ε > 0, with high probability
cost(Kn, H ′n) ≤ 1 + ε.

The proof of Proposition 1.4 appears in Section 2. We are now prepared to prove Theorem 1.1,
modulo the proofs of Proposition 1.3 and Proposition 1.4.

Proof of Theorem 1.1. We already established the lower bound of the theorem, so it remains to show
that for all ε > 0,

P
(

cost(Kn, Hn) ≤ 1 + ε
)
−→ 1

as n→∞. For the remainder of the proof we fix ε > 0.
Using Fact 1.2, let Vn be a subset of [n] with size at least 1

2
√

log2 n such that Hn[Vn] is a clique, a
star or a path. Write K−n = Kn[Vn] and H−n = Hn[Vn], and let S−n be an MST sequence for (K−n , H−n )
of minimum cost. By Proposition 1.3,

P
(

wt(K−n , H−n ,S−n ) ≤ 1 + ε
)
−→ 1

as n → ∞. Moreover, we have wt(K−n , H−n ,S−n ) = wt(Kn, Hn,S−n ): the weight of the sequence S−n is
the same with respect to (K−n , H−n ) = (Kn[Vn], Hn[Vn]) as it is with respect to (Kn, Hn); this is easily
seen be induction. It follows that

P
(

wt(Kn, Hn,S−n ) ≤ 1 + ε
)
−→ 1 .

Next letH ′n = ΦKn
(Hn, Vn), soH ′n[Vn] = MST(Kn[Vn]). Since S−n is an MST sequence for (K−n , H−n ),

this is also the graph resulting from using S−n as an optimizing sequence for (Kn, Hn). Now let S′n be
an MST sequence for H ′n of minimum cost. Since |Vn| → ∞ and Hn[Vn] is connected, it follows from
Proposition 1.4 that

P
(

wt(Kn, H ′n,S′n) ≤ 1 + ε
)
−→ 1 .

To conclude, note that the concatenation Sn of S−n and S′n is an MST sequence for (Kn, Hn), and

wt(Kn, Hn,Sn) = max
{

wt(Kn, Hn,S−n ),wt(Kn, H ′n,S′n)
}
,

so P(wt(Kn, Hn,Sn) ≤ 1 + ε)→ 1 and thus P(cost(Kn, Hn) ≤ 1 + ε)→ 1, as required. �

The remainder of the paper proceeds as follows. In Section 2 we describe the eating algorithm and
prove Proposition 1.4, modulo the proof of a key technical input (Theorem 2.3), an upper tail bound
on the weighted diameter of MST(Kn), which is postponed to Appendix A. In Section 3 we prove
Proposition 1.3 by using the details of the eating algorithm to generate a well bounded sequence of
increasing MSTs that are each built from a clique, a star, or a path. We conclude in Section 4 by
presenting the generalization of Theorem 1.1 to other edge weight distributions, and by discussing
avenues for future research.

2. The eating algorithm

In this section, we prove Proposition 1.4. Informally, we prove this proposition by showing that we
can efficiently add vertices to an MST of a large subgraph of Kn, one at a time, via an optimizing
sequence which has a low weight, with high probability. For a weighted graph G = (V,E,w), write
wdiam(G) for the weighted diameter of G,

wdiam(G) := max
{

distG(u, v) : u, v ∈ V
}
,
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where
distG(u, v) := min

{
w(P ) : P is a path from u to v in G

}
.

It is sometimes convenient to write wdiam(G) for an unweighted graph G, where the appropriate choice
of weights is clear from context. Finally, we also introduce the unweighted diameter

diam(G) := max
{

min
{∣∣E(P )

∣∣ : P is a path from u to v in G
}

: u, v ∈ V
}
,

which will be used later in this work (in Section 3.2 and in Appendix A).
The key tool to prove Proposition 1.4 is the following proposition, which will be applied recursively.

Proposition 2.1. Let G = (V,E,w) be a generic weighted graph with V = [n] and max{w(e) : e ∈
E)} ≤ 1. Suppose that H is a spanning subgraph of G and H[n− 1] = MST(G[n− 1]). Then

cost(G, H) ≤ 1 + max
{

wdiam
(

MST(G[n− 1])
)
,wdiam

(
MST(G)

)}
.

The proof of Proposition 2.1 occupies the bulk of Section 2; it appears below in Sections 2.1 and 2.2.

Corollary 2.2 (The eating algorithm). Let G = (V,E,w) be a weighted graph with V = [n] and
max{w(e) : e ∈ E} ≤ 1. Let H be a spanning subgraph of G and fix a non-empty set U ⊂ [n] for which
H[U ] = MST(G[U ]). Let U = U0 ⊂ U1 ⊂ . . . ⊂ Uk = V be any increasing sequence of subsets of V
such that, for all 0 ≤ i < k, Ui+1 \ Ui is a singleton and H[Ui] is connected. Then

cost(G, H) ≤ 1 + max
{

wdiam
(

MST(G[Ui])
)

: 0 ≤ i ≤ k
}
.

Proof. Set F0 = H and let S1, . . . ,Sk and F1, . . . , Fk be constructed inductively as follows. Given Fi−1,
let Si be an MST sequence of minimal weight for the pair (G[Ui], Fi−1[Ui]) and let Fi = ΦG(Fi−1, Ui).
Note that Fi[Ui] is the last graph of the subgraph sequence corresponding to Si.

By using that an optimizing sequence on (G[Ui], Fi−1[Ui]) can also be seen as an optimizing sequence
on (G, Fi−1) of identical weight, we can bound the weight of the global optimizing sequence S obtained
by concatenating S1, . . . ,Sk in that order. Indeed, we have that

wt(G, H, S) = max
{

wt(G[Ui], Fi−1[Ui],Si) : 1 ≤ i ≤ k
}
.

Moreover, by the definition of Fi−1, we know that Fi−1[Ui−1] = MST(G[Ui−1]) and by minimality of
Si along with Proposition 2.1, it follows that for all 1 ≤ i ≤ k,

wt(G[Ui], Fi−1[Ui],Si) ≤ 1 + max
{

wdiam
(

MST(G[Ui−1])
)
,wdiam

(
MST(G[Ui])

)}
.

Since cost(G, H) ≤ wt(G, H, S), combining the last two results provides us with the desired upper
bound for cost(G, H). �

The importance of this corollary becomes clear in light of the next theorem, which provides strong
tail bounds on the diameter of MSTs of randomly-weighted complete graphs.

Theorem 2.3. Let Kn = (Kn,X) be the complete graph with vertex set [n], endowed with independent,
Uniform[0, 1] edge weights X = (Xe, e ∈ E(Kn)). Then for all n sufficiently large,

P
(

wdiam
(

MST(Kn)
)
≥ 7 log4 n

n1/10

)
≤ 4
nlogn .

In particular, wdiam(MST(Kn)) P−→ 0 as n→∞.

The proof of Theorem 2.3 is postponed to Appendix A. We now use Corollary 2.2 and Theorem 2.3
to prove Proposition 1.4.

Proof of Proposition 1.4. Consider any sequence of sets (Vn, n ≥ 1) with Vn ⊂ [n] and |Vn| → ∞ as
n → ∞ and such that Hn[Vn] is connected for all n ≥ 1, and let H ′n = ΦKn

(Hn, Vn). Since H ′n is
connected, we may list the vertices of [n]\Vn as v1, . . . , vk so that for all 1 ≤ i ≤ k, vertex vi is adjacent
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to an element of Vn ∪ {v1, . . . , vi−1}. Taking U0 = Vn and Ui = Vn ∪ {v1, . . . , vi} for 1 ≤ i ≤ k, the
sequence U0, . . . , Uk satisfies the conditions of Corollary 2.2 with G = Kn. It follows that

(2.1) cost(Kn, H ′n) ≤ 1 + max
{

wdiam
(

MST(Kn[Ui])
)

: 0 ≤ i ≤ k
}
.

Moreover, since |Vn| → ∞ as n→∞, for n sufficiently large we may apply Theorem 2.3 to Kn[Ui] for
each 0 ≤ i ≤ k and obtain that

P
(
∃i : wdiam

(
MST(Kn[Ui])

)
≥ |Ui|−

1
11

)
≤

k∑
i=0

P
(

wdiam
(

MST(Kn[Ui])
)
≥ |Ui|−

1
11

)
≤

k∑
i=0

1
|Ui|2

;

where we have used that 7 log4 n
n1/10 ≤ 1

n1/11 and that 4
nlog n < 1

n2 for n large. Since |Ui| = |U0|+i = |Vn|+i,
it follows that for all n sufficiently large,

P
(
∃i : wdiam

(
MST(Kn[Ui])

)
≥ |Ui|−

1
11

)
≤

n∑
s=|Vn|

1
s2 ≤

1
|Vn| − 1 −→ 0 .

In view of (2.1), this yields that

P
(

cost(Kn, H ′n) ≥ 1 + ε
)
≤ P

(
∃i : wdiam

(
MST(Kn[Ui])

)
≥ ε
)
−→ 0 ,

as desired. �

The remainder of Section 2 is devoted to proving Proposition 2.1.

2.1. A special case of Proposition 2.1. To prove Proposition 2.1, we need to bound cost(G, H)
when H is a spanning subgraph of G with H[n − 1] = MST(G[n − 1]). It is useful to first treat the
special case that H only contains one edge which does not lie in MST(G[n− 1]), and more specifically
that n is a leaf and H is a tree. We will later use this case as an input to the general argument.

Proposition 2.4. In the setting of Proposition 2.1, if n is a leaf of H then
cost(G, H) ≤ 1 + wdiam

(
MST(G[n− 1])

)
.

The next lemma will be useful in the proof of both the special case and the general case; informally, it
states that optimizing sequences never remove MST edges that are already present, and that optimizing
sequences do not create cycles.

Lemma 2.5. Let (Si, 1 ≤ i ≤ m) be an MST sequence for (G, H) with corresponding spanning subgraph
sequence (Hi, 0 ≤ i ≤ m). Then

(1) if e ∈ E(MST(G)) and e ∈ E(Hi), then e ∈ E(Hj) for all i ≤ j ≤ m, and
(2) if Hi is a tree, then Hj is a tree for all i ≤ j ≤ m.

Proof. We use the standard fact that if G = (V,E,w) is a weighted graph with all edge weights distinct,
then e ∈ E(MST(G)) if and only if e is not the heaviest edge of any cycle in G.

Fix e ∈ E(MST(G)) and suppose that e ∈ E(Hi). If the endpoints of e do not both lie in Si+1 then
clearly e ∈ E(Hi+1) since Hi and Hi+1 agree except on Si+1. If the endpoints of e both lie in Si+1 then
since e is not the heaviest edge of any cycle in G, it is not the heaviest edge of any cycle in G[Si+1].
Thus e ∈ E(MST(G[Si+1])), and so again e ∈ E(Hi+1). It follows by induction that e ∈ E(Hj) for all
i ≤ j ≤ m.

The second claim of the lemma is immediate from the the fact that if T is any tree, S is a subset
of V(T ) such that T [S] is a tree, and T ′ is another tree with V(T ) = S, then the graph with vertices
V(T ) and edges (E(T ) \ E(T [S])) ∪ E(T ′) is again a tree. �

We now assume G and H are as in Proposition 2.4. Define an optimizing sequence S = (Si, 1 ≤ i ≤
n− 1) for (G, H) as follows. Let S1 be the set of vertices on the path from n to 1 in H0 = H, and let
H1 = ΦG(H0, S1). Then, inductively, for 1 < i ≤ n− 1 let Si be the set of vertices on the path from n
to i in Hi−1 and let Hi = ΦG(Hi−1, Si). Since H = H0 is a tree, by point 2 of Lemma 2.5 it follows
that Hi is a tree for all i, so the paths Si are uniquely determined and the sequence S is well-defined.
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Proposition 2.4 is now an immediate consequence of the following two lemmas.

Lemma 2.6. S is an MST sequence for (G, H).

Proof. Since Hm is a tree, it suffices to show that MST(G) is a subtree of Hm. Let e ∈ E(MST(G)).
Then either e ∈ E(H0[n − 1]) or e = in for some i ∈ [n − 1]. If e ∈ E(H0[n − 1]) then e ∈ E(H0)
meaning that, by point 1 of Lemma 2.5, we have e ∈ E(Hm). Otherwise, if e = in for some i ∈ [n− 1],
then e ∈ E(G[Si]) since Si is the set of vertices on a path from n to i. Hence, e ∈ E(MST(G[Si])),
meaning that e ∈ E(Hi). Once again, by point 1 of Lemma 2.5, this implies that e ∈ E(Hm), proving
that MST(G) is a subtree of Hm. �

Lemma 2.7. wt(S) ≤ 1 + wdiam(MST(G[n− 1])

Proof. Let i ∈ [n − 1]. Notice that the path from n to i in Hi−1 contains a single edge from n to
[n − 1]. Hence, the weight of this path is bounded from above by 1 + wdiam(Hi−1[n − 1]). To prove
the lemma it therefore suffices to show that E(Hi[n− 1]) ⊆ E(H0[n− 1]) = E(MST(G[n− 1])).

We prove this by induction on i, the base case i = 0 being automatic. For i > 0, suppose that
E(Hi−1[n − 1]) ⊆ E(H0[n − 1]). Fix any vertices u, v ∈ Si ∩ [n − 1] with uv 6∈ E(Hi−1) and let P
be the path from u to v in Hi−1. Then P is a subpath of Hi−1[Si], and so by induction it is also a
subpath of H0. Since H0[n − 1] = MST(G[n − 1]) it follows that P is a subpath of MST(G[n − 1]).
This yields that uv is the edge with highest weight on the cycle created by closing P , and all the
vertices of this cycle lie in Si; so uv 6∈ E(MST(G[Si])) and thus uv 6∈ E(Hi). This shows that
E(Hi[Si]) ⊆ E(Hi−1[Si]) ⊆ E(H0[Si]). Since the rest of Hi−1[n − 1] and Hi[n − 1] are identical, it
follows that E(Hi[n− 1]) ⊆ E(H0[n− 1]), as required. �

2.2. The general case of Proposition 2.1. We now lift the assumption that H is a tree; in this
case, E(H) \ E(H[n− 1]) could contain up to n− 1 edges. As a result, the MST sequence previously
defined in Section 2.1 does not provide us with the desired cost, since a path from n to i ∈ [n − 1]
might contain additional edges with n as an endpoint, increasing the weight of the sequence. Thus,
we require a more careful method. Informally, our approach is to first apply the method from the
previous section to a sequence of subgraphs of H[n − 1], each of which is only joined to the vertex n
by a single edge, but together which contain all the edges from n to [n− 1]. We show that this yields
a graph which contains the MST of G. We then prove that any cycles in the resulting graph can be
removed at a low cost.

Let G = (V,E,w) be a generic weighted graph with V = [n] and let H be a spanning subgraph of
G with H[n− 1] = MST(G[n− 1]). Let {v1n, . . . , vkn} ⊆ E(H) be the set of edges in H with n as an
endpoint, and for 1 ≤ i ≤ k let

Vi =
{
v ∈ [n− 1] : dist(H[n−1],w)(vi, v) = min

{
dist(H[n−1],w)(vi, vj) : 1 ≤ j ≤ k

}}
.

That is to say, (Vi, 1 ≤ i ≤ k) is the Voronoi partition of [n−1] in H[n−1] with respect to the vertices
v1, . . . , vk; it is indeed a partition since G is generic.

Note that since H[n − 1] = MST(G[n − 1]) it follows that H[Vi] = MST(G[Vi]) for any 1 ≤ i ≤ k.
Moreover, vertex n has degree one in H[Vi ∪ {n}]. Using Proposition 2.4, let Si = (Si,j , 1 ≤ j ≤ mi)
be an MST sequence for (G[Vi ∪ {n}], H[Vi ∪ {n}]) with weight less than 1 + wdiam(MST(G[Vi])) ≤
1 + wdiam(MST(G[n − 1])), and write (Hi,j , 0 ≤ j ≤ mi) for the corresponding subgraph sequence.
Now set m = m1 + . . .+mk and let S∗ = (S∗1 , . . . , S∗m) be formed by concatenating S1, . . . ,Sm, so

S∗ = (S1,1, . . . , S1,m1 , . . . , Sk,1, . . . , Sk,mk
) ,

and let (H∗0 , . . . ,H∗m) be the subgraph sequence corresponding to S∗.

Lemma 2.8. We have MST(G) ⊆ H∗m, and wt(S∗) ≤ 1 + diam(MST(G[n− 1])).

Proof. First, by assumption, H0[n − 1] = MST(G[n − 1]). Since MST(G)[n − 1] is a subgraph of
MST(G[n− 1]), point 1 of Lemma 2.5 implies that MST(G)[n− 1] is a subgraph of H∗i for all i, so in
particular of H∗m.
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Next, since V1, . . . , Vk are disjoint, we have Si,j ∩ Si′,j′ = {n} whenever i 6= i′, and it follows that
H∗m1+...+mi−1

[Vi ∪ {n}] = H[Vi ∪ {n}] for all 1 ≤ i ≤ k. This implies that H∗m1+...+mi−1+j [Vi ∪ {n}] =
Hi,j for each 1 ≤ j ≤ mi, so in particular H∗m1+...+mi

[Vi ∪ {n}] = MST(G[Vi ∪ {n}]).
Now fix any edge vn of MST(G). Then v ∈ Vi for some 1 ≤ i ≤ k, so vn ∈ E(MST(G[Vi ∪{n}])). It

follows that vn ∈ H∗m1+...+mi
, and thus by point 1 of Lemma 2.5 that vn is an edge of H∗m. Therefore

all edges of MST(G) are edges of H∗m, as required.
Finally, the bound on the weight of the sequence is immediate by the definition of S∗ and by using

that wt(G[Vi ∪ {n}], H[Vi ∪ {n}],Si) = wt(G, H, Si). �

We are now left to deal with the edges E(H∗m) \ E(MST(G)). This is taken care of in the following
lemma.

Lemma 2.9. Let G = (V,E,w) be a generic weighted graph with V = [n] and with all edge weights at
most 1, and let H be a subgraph of G such that MST(G) is a subgraph of H. Write k = |E(H)|−(n−1).
Then there exists an MST sequence S′ = (S′1, . . . , S′k) with

wt(S′) ≤ 1 + wdiam
(

MST(G)
)
.

Proof. If H is a tree then there is nothing to prove, so assume G contains at least one cycle (so k ≥ 1).
In this case there exist vertices u, v which are not adjacent in MST(G) but are joined by an edge in
H; choose such u and v so that the length (number of edges) on the path P from u to v in MST(G)
is as small as possible. Let S = V(P ) be the set of vertices of the path P ; then H[S] is a cycle (by
the minimality of the length of P ), and uv is the edge with largest weight on H[S]. It follows that
MST(G[S]) = P , so ΦG(H,S) has edge set E = E(H) \ {uv}. Moreover, since P is a path of MST(G),
it follows that

w(H[S]) = w(uv) + wt(P ) ≤ 1 + wdiam(MST(G)) .
Since ΦG(H,S) contains MST(G) but has one fewer edge than H, the result follows by induction. �

We now combine Lemmas 2.8 and 2.9 to conclude the proof of Proposition 2.1.

Proof of Proposition 2.1. Let S∗ = (S∗1 , . . . , S∗m) be the optimization sequence defined above Lemma 2.8,
and let (H∗0 , . . . ,H∗m) be the corresponding subgraph sequence. By that lemma, MST(G) is a subgraph
of H∗m and wt(S∗) ≤ 1 + wdiam(MST(G[n− 1])).

Next let S′ = (S′1, . . . , S′k) be an MST sequence for (G, H∗m) of weight at most 1 + wdiam(MST(G));
the existence of such a sequence is guaranteed by Lemma 2.9. Then the concatenation

S = (S∗1 , . . . , S∗m, S′1, . . . , S′k)

of S∗ and S′ is an MST sequence for (G, H), of weight at most

wt(G, H, S) ≤ 1 + max
{

wdiam
(

MST(G[n− 1])
)
,wdiam

(
MST(G)

)}
,

and the desired bound on cost(G, H) follows. �

3. MST sequences for the the clique, the star, and the path

This section is aimed at proving Proposition 1.3. We start by proving the result in the case of the
clique, since it is straightforward using the result of Lemma 2.9. After that, the case of the star and
the path are covered together; the proof in those cases uses the eating algorithm, Corollary 2.2, to find
adequate sequences of increasing subsets on which to build increasing sequences of MSTs.

Proof of Proposition 1.3 (Case of the clique). Using Lemma 2.9, since MST(Kn) is a subgraph ofHn =
Kn, it follows that

cost(Kn, Hn) ≤ 1 + wdiam
(

MST(Kn)
)
.

By Theorem 2.3 we have wdiam(MST(Kn)) P−→ 0, and the result follows. �
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3.1. MST sequences for the star and the path. In this section, we assume that Hn is either a
star or a path. If Hn is a star, then by relabeling we may assume Hn has center n, so has edge set
{e1, . . . , en−1} with ei = in; call this star Sn. If Hn is a path, then by relabeling we may assume Hn

is the path Pn = 12 . . . n, so has edge set {ei, . . . , en−1} with ei = i(i + 1). In either case, with this
edge labeling, for any 1 ≤ i < j ≤ n − 1, the set V (i, j) defined as the endpoints in {ei, . . . , ej−1} is
connected in Hn. Note that V (i, j) = {i, . . . , j − 1} ∪ {n} when Hn is a star and V (i, j) = {1, . . . , j}
when Hn is a path, and in both cases |V (i, j)| = j − i+ 1. For the remainder of the section, it might
be helpful to imagine that Hn is the path, 12 . . . n.

Recall that X = (Xe, e ∈ E(Kn)) is a set of independent Uniform[0, 1] random variables. For
W ∈ (0, 1) and 2 ≤ L < n− 1, let

I = I(W,L) = (n− L) ∧min
{
i : ∀i ≤ j < i+ L,Xej

≤W
}
.(3.1)

Note that I is a function of X and more precisely that

{I ≤ k} ∈ σ
({
Xei
≤W

}
, 1 ≤ i < k + L

)
,

where σ(X) is the σ-algebra generated by X.
Next, let U = U(I) = (Ui, 0 ≤ i < n− L) be the sequence of sets defined as follows.

(U0, . . . , Un−L−1) =
(
V (I, I + L), . . . , V (I, n), V (I− 1, n), . . . , V (1, n)

)
.(3.2)

In words, U0 is the set of vertices that belong to the edges eI, . . . , eI+L−1 (that is V (I, I +L)); then we
sequentially build U1, . . . , Un−L−1 by first adding the vertices belonging to eI+L, . . . , en−1, then adding
the vertices belonging to eI−1, . . . , e1; see Figure 1 for a representation of I and U.

We now use the sequence U to bound the cost of (Kn, Hn) when Hn is a star or a path. The
following lemma gives a first bound on the cost using U.

Lemma 3.1. Let Hn be the star Sn or path Pn. Then, conditionally given that I(W,L) < n− L, we
have

cost(Kn, Hn) ≤ max
{
WL, 1 + max

{
wdiam

(
MST(Kn[Ui])

)
: 0 ≤ i < n− L

}}
.

Proof. This result almost directly follows from Corollary 2.2. Indeed, let H ′n = Φ(Hn, U0). Then the
sets U0, . . . , Un−L−1 satisfy the condition of Corollary 2.2 with H = H ′n, implying that

cost(Kn, H ′n) ≤ 1 + max
{

wdiam
(

MST(Kn[Ui])
)

: 0 ≤ i < n− L
}
.

But now, by concatenating any minimal weight MST sequence for (Kn[U0], Hn[U0]) and any minimal
weight MST sequence for (Kn, H ′n), it follows that

cost(Kn, Hn) ≤ max
{

cost
(
Kn[U0], Hn[U0]

)
, cost

(
Kn, H ′n

)}
.

In order to complete the proof of the lemma, note that, conditionally given I < n− L,

w(Hn[U0]) =
∑

e∈E(Hn[U0])

Xe ≤WL .

Taking S = (U0), this yields
cost

(
Kn[U0], Hn[U0]

)
≤ wt

(
Kn[U0], Hn[U0],S

)
= w

(
Hn[U0]

)
≤WL .

This proves the desired upper bound and concludes the proof of the lemma. �

The next two results, combined with Lemma 3.1, will allow us to give the full proof of Proposition 1.3
when Hn is either a star or a path.

Proposition 3.2. For any ε > 0, for W = 1
logn and L = blog lognc, as n→∞ we have

P
(
∃U ∈ U(I(W,L)) : wdiam

(
MST(Kn[U ])

)
> ε
)
−→ 0 .
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W = 0.2 L = 3

1 2 3 4 5 6 7 8 90.6 0.9 0.5 0.1 0.2 0.1 0.1 0.7(Hn, w) =
the ordered line

with random
edge weights.

1 2 3 4 5 6 7 8 90.6 0.9 0.5 0.1 0.2 0.1 0.1 0.74 5 6 70.1 0.2 0.1

I = 4

I is the first
index followed
by L = 3 edges
of weight less
than W = 0.2.

U =

1 2 3 4 5 6 7 8 90.6 0.9 0.5 0.1 0.2 0.1 0.1 0.74 5 6 7
U0

1 2 3 4 5 6 7 8 90.6 0.9 0.5 0.1 0.2 0.1 0.1 0.74 5 6 7 8
U1

1 2 3 4 5 6 7 8 90.6 0.9 0.5 0.1 0.2 0.1 0.1 0.74 5 6 7 8 9
U2

1 2 3 4 5 6 7 8 90.6 0.9 0.5 0.1 0.2 0.1 0.1 0.73 4 5 6 7 8 9
U3

1 2 3 4 5 6 7 8 90.6 0.9 0.5 0.1 0.2 0.1 0.1 0.72 3 4 5 6 7 8 9
U4

1 2 3 4 5 6 7 8 90.6 0.9 0.5 0.1 0.2 0.1 0.1 0.71 2 3 4 5 6 7 8 9
U5

The sets in U are
built using L = 3
and I = 4 to set
U0 = {4, 5, 6, 7}

before expanding
on both sides

(right then left).

Figure 1. An example of I and U for an instance of the weighted ordered line (Hn, w),
with W = 0.2 and L = 3. First, I is set to be the first sequence of L = 3 consecutive
edges with weights less than W = 0.2. In this example, I = 4. Then, given I,
set U0 = V (I, I + L) = {4, 5, 6, 7} and expand first to the right and then to left to
obtain U1, . . . , Un−L−1. In other words, in order to obtain U1, U2, U3, U4, and U5, we
sequentially add 8, 9, 3, 2, and 1 to U0.

Lemma 3.3. Let W = 1
logn and L = blog lognc. Then, for any a > 0, as n→∞ we have

P
(
I(W,L) ≥ na

)
−→ 0 .

Lemma 3.3 is straightforward and we prove it immediately. On the other hand, Proposition 3.2 is
quite technical and we dedicate Section 3.2 below to proving it.

Proof of Lemma 3.3. For any integer k ≥ 1, by the definition of I,

P
(
I ≥ kL+ 1

)
= P

(
∀i < kL+ 1,∃j ∈ {i, . . . , i+ L− 1} : Xej

> W
)

≤ P
(
∀i ∈

{
1, 1 + L, . . . , 1 + (k − 1)L

}
,∃j ∈ {i, . . . , i+ L− 1} : Xej

> W )
)
.

But then, by independence of the weights of X, we have

P
(
I ≥ kL+ 1

)
=
k−1∏
i=0

P
(
∃j ∈ {1 + iL, . . . , 1 + (i+ 1)L− 1} : Xej

> W
)

=
k−1∏
i=0

(
1−WL

)
≤ e−kW

L

,
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where the last inequality follows from the convexity of the exponential. Applying this result with
k = bn

a−1
L c, we obtain

P
(
I ≥ na

)
≤ P

(
I ≥ kL+ 1

)
≤ exp

(
−
⌊
na − 1
L

⌋
·WL

)
,

and the final expression tends to 0 as n→∞. �

Proof of Proposition 1.3 (Case of the star and the path). Let W = 1
logn and L = blog lognc. Fixing

ε > 0, we have

P
(

cost(Kn, Hn) > 1 + ε
)
≤ P

(
cost(Kn, Hn) > 1 + ε

∣∣∣ I < n− L
)

+ P
(

I = n− L
)
.

Applying Lemma 3.3 with any a < 1, for large enough n we have

P
(

I = n− L
)
≤ P

(
I ≥ na

)
−→ 0 .

Hence, we have

P
(

cost(Kn, Hn) > 1 + ε
)

= P
(

cost(Kn, Hn) > 1 + ε
∣∣∣ I < n− L

)
+ o(1) .

Since WL→ 0, combining the previous bound with Lemma 3.1 leads to

P
(

cost(Kn, Hn) > 1 + ε
)

≤ P
(

max
{
WL, 1 + max

{
wdiam

(
MST(Kn[Ui])

)}}
> 1 + ε

∣∣∣∣ I < n− L
)

+ o(1)

= P
(

max
{

wdiam
(

MST(Kn[U ])
)

: U ∈ U
}
> ε

∣∣∣∣ I < n− L
)

+ o(1) .

The upper bound now follows from Proposition 3.2, once again since P(I < n− L)→ 0. �

3.2. Proof of Proposition 3.2. In this section, we prove Proposition 3.2, which concludes the proof
of Proposition 1.3. Before doing so, we state a proposition which is an important input to the proof.

Proposition 3.4. Let G = (G,w) be a weighted graph. Let T be a subtree (not necessarily spanning)
of G and let G∗ = (G,w∗) be a weighted graph such that w∗(e) ≤ w(e) for e ∈ E(T ) and w∗(e) = w(e)
otherwise. Then

wdiam
(

MST(G∗)
)
≤ w∗(T ) + |V(T )| × wdiam

(
MST(G)

)
.

Moreover, if T is a subtree of MST(G∗), then

wdiam
(

MST(G∗)
)
≤ w∗(T ) + 2× wdiam

(
MST(G)

)
.

Proof. Let us try to understand the relation between MST(G) and MST(G∗). First note that

E(MST(G∗)) ⊂ E
(

MST(G)
)
∪ E(T ) .(3.3)

Indeed, any edge e /∈ E(T ) has the same weight with respect to w and w∗. Then, for any e ∈
E(MST(G∗)) \ E(T ), no cycle has e as the heaviest edge with respect to w∗, which implies that no
cycle has e as the heaviest edge with respect to w, and thus e ∈ E(MST(G)).

Consider now a path P contained in MST(G∗). Using (3.3), we have

E(P ) ⊆ E
(

MST(G)
)
∪ E(T ) ,

so we may uniquely decompose P into pairwise edge-disjoint paths P0, . . . , P2k, where k ≥ 1, and Pi is
a subpath of T for i odd and of MST(G) for i even (it is possible that either or both of P0, P2k consists
of a single vertex). Since P1, P3, . . . , P2k−1 are disjoint subpaths of T , it follows that k ≤ |E(T )|
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and that
∑
i odd w(Pi) ≤ w(T ). Moreover, each of the paths P0, P2, . . . , P2k have weight at most

wdiam
(

MST(G)
)
, so ∑

i even

w(Pi) ≤ (k + 1)× wdiam
(

MST(G)
)

(3.4)

≤
(
|E(T )|+ 1

)
× wdiam

(
MST(G)

)
= |V(T )| × wdiam

(
MST(G)

)
.

The first bound of the proposition follows since

w(P ) =
∑
i even

w(Pi) +
∑
i odd

w(Pi) .

To establish the second bound, note that if T is a subtree of MST(G∗) then in the above decomposition
of P we must have k = 1; a path in MST(G∗) may enter T and then leave it, after which it can never
reenter T . In this case the first summation of (3.4) becomes∑

i even

w(Pi) ≤ 2× wdiam
(

MST(G)
)
,

so we obtain

w(P ) =
∑
i even

w(Pi) +
∑
i odd

w(Pi) ≤ w(T ) + 2× wdiam(MST(G)) ,

as required. �

For the remainder of this section we assume W = 1
logn and L = blog lognc and write I = I(W,L).

Consider the partition U = U−r ∪ U+
r ∪ U` where U−r = U−r (I) = (Ui, 0 ≤ i ≤ min(L20, n − I − L)),

U+
r = U+

r (I) = (Ui,min(L20, n−I−L) < i ≤ n−I−L), and U` = U`(I) = (Ui, n−I−L < i ≤ n−L−1).
Then, in the case where I < n− L− L20, U−r corresponds to adding the first L20 vertices on the right
of U0, U+

r corresponds to adding all remaining vertices on the right, and U` corresponds to adding
the vertices on the left of U0. We aim to prove tail bounds similar to that of Proposition 3.2 for each
of the sets U−r , U+

r , and U`, and we start with an important lemma regarding the distribution of G
conditioned on the value of I.

Lemma 3.5. Fix k < n− L and let K∗n = (Kn,X∗) have the law of Kn conditioned on the event that
I(W,L) = k. Then for any e ∈ {ei, k ≤ i < k + L}, X∗e is a Uniform[0,W ]; for any e /∈ {ei : 1 ≤
i < k + L}, X∗ei

is a random Uniform[0, 1], and the edge weights
(
X∗e , e ∈ E(Kn) \ {ei, 1 ≤ i < k}

)
are mutually independent and independent of (X∗e , e ∈ {ei, 1 ≤ i < k}). It follows that there exists a
coupling between K∗n = (Kn,X∗) and K′n = (Kn,X′) where X′ is a set of independent Uniform[0, 1],
such that X∗e ≤ X ′e if e ∈ {ei : k ≤ i < k + L}, and X∗e = X ′e if e ∈ E(Kn) \ {ei : 1 ≤ i < k + L}.

Proof. Using the definition of I, we know that{
I = k

}
∈ σ
({
Xei
≤W : 1 ≤ i < k + L

})
,

from which it directly follows that the distribution of Xe is a Uniform[0, 1] for any e /∈ {en,i : 1 ≤ i <
k + L}. Furthermore, for any e ∈ {ei : k ≤ i < k + L}, Xe conditioned on I = k is the same as Xe

conditioned on Xe ≤W . Since Xe is uniformly distributed, it follows that Xe conditioned on I = k is
a Uniform[0,W ]. Finally, note that

{
I = k

}
=
{
Xei
≤W : k ≤ i < k + L

}
∩
k−1⋂
j=1

{
∃j ≤ i < min{j + L, k} : Xei

> W
}
,

from which we see that the edges of E(Kn) \ {ei, 1 ≤ i < k} are conditionally independent of {ei, 1 ≤
i < k} given that I = k. It follows that all the edges in E(Kn)\{ei, 1 ≤ i < k} have independent weights
in K∗n. The existence of the coupling asserted in the lemma is then an immediate consequence. �
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We now split the proof of Proposition 3.2 into proving analogous statements for the three different
sets U−r , U+

r , and U`.
First right set U−r .

Lemma 3.6. For any ε > 0, we have

P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε
)
−→ 0 .

Proof. Fix 0 < a < 1 and assume n is large enough so that na < n− L− L20. Then, by Lemma 3.3,
we have

P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε
)

≤ P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε

∣∣∣ I < n− L− L20
)

+ P
(
I ≥ n− L− L20)

= P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε

∣∣∣ I < n− L− L20
)

+ o(1) .

Next fix k < n−L−L20 and condition on the event I = k. Under this conditioning, U−r = U−r (I) =
U−r (k) is a deterministic sequence of sets. Further recall from (3.2) that U0 = V (k, k + L) consists of
the endpoints of the edges ek, . . . , ek+L−1, so equals {k, . . . , k + L} if Hn is the path Pn and equals
{k, . . . , k + L − 1, n} if Hn is the star Sn. Let T = Hn[U0]. Since I = k < n − L, all edges in T have
weight less than W . Now, suppose that all other edges of Kn[UL20 ] have weight larger than W . In this
case, T is a subtree of MST(Kn[UL20 ]), from which it follows that T is a subtree of MST(Kn[Ui]) for
any 0 ≤ i ≤ L20 (since Ui ⊂ UL20 for such Ui). Now, using that {I = k} ∈ σ({Xei

: 1 ≤ i < k + L}),
we have

P
(
∀e ∈ E

(
Kn[UL20 ]

)
\ E(T ), Xe > W

∣∣∣ I = k
)

=
(
1−W

)(L20
2 )−L

.

Since W = 1
logn , we have 1−W ≥ exp(−2W ) for n large, so

P
(

E(T ) ⊂ E
(

MST
(
Kn[UL20 ]

)) ∣∣∣ I = k
)
≥
(
1−W

)(L20
2 )−L

≥ exp
(
−2W

((
L20

2

)
− L

))
≥ exp

(
−WL40)

≥ 1− (log logn)40

logn ,

the last inequality holding since W = 1
logn , L = blog lognc, and e−x ≥ 1− x for x ≥ 0. Hence,

P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε

∣∣∣ I = k
)(3.5)

≤ P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε,E(T ) ⊂ E

(
MST

(
Kn[UL20 ]

)) ∣∣∣ I = k
)

+ (log logn)40

logn .

Let (K∗n,K′n) be as in Lemma 3.5. By the definition of K∗n and (3.5), we have that

P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε

∣∣∣ I = k
)

≤ P
(
∃U ∈ U−r (k) : wdiam

(
MST(K∗n[U ])

)
> ε,E(T ) ⊂ E

(
MST

(
K∗n[UL20 ]

)))
+ (log logn)40

logn .

Now, note that if E(T ) ⊂ E(MST(K∗n[UL20 ])), then for any U ∈ U−r (k), E(T ) ⊂ E(MST(K∗n[U ])),
since MST(K∗n[UL20 ])[U ] is a subgraph of MST(K∗n[U ]). Applying Proposition 3.4 to MST(K∗n[U ]) and
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MST(K′n[U ]), it follows that

P
(
∃U ∈ U−r (k) : wdiam

(
MST(K∗n[U ])

)
> ε,E(T ) ⊂ E

(
MST

(
K∗n[UL20 ]

)))
≤ P

(
∃U ∈ U−r (k) : w∗(T ) + 2× wdiam

(
MST(K′n[U ])

)
> ε,E(T ) ⊂ E

(
MST

(
K∗n[UL20 ]

)))
≤ P

(
∃U ∈ U−r (k) : w∗(T ) + 2× wdiam

(
MST(K′n[U ])

)
> ε
)
.

Using that w∗(T ) ≤WL and combining the two previous inequalities yields the bound

P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε

∣∣∣ I = k
)

(3.6)

≤ P
(
∃U ∈ U−r (k) : wdiam

(
MST(K′n[U ])

)
> (ε−WL)/2

)
+ (log logn)40

logn .

We can now replace K′n by Kn since they are identically distributed. Furthermore, recall that Theo-
rem 2.3 states that, for n sufficiently large, we have

P
(

wdiam
(

MST(Kn)
)
≥ 7 log4 n

n1/10

)
≤ 4
nlogn .

Since L → ∞ and WL → 0 as n → ∞, and since any set U ∈ U−r has size |U | ≥ |U0| = L + 1, we
can choose n large enough so that, for any set U ∈ U−r , we have 7 log4 |U |/|U |1/10 ≤ (ε −WL)/2. It
follows that

P
(
∃U ∈ U−r (k) : wdiam

(
MST(K′n[U ])

)
> (ε−WL)/2

)
≤ P

(
∃U ∈ U−r (k) : wdiam

(
MST(Kn[U ])

)
≥ 7 log4 |U |
|U |1/10

)
≤

∑
U∈U−r (k)

4
|U |log |U |

The final step of the proof is to use that U−r (k) = (Ui, 0 ≤ i ≤ L20) where |Ui| = |U0|+ i = L+ i+ 1,
along with the fact that 4/nlogn ≤ 1/n2 for n large enough, to obtain that

P
(
∃U ∈ U−r (k) : wdiam

(
MST(K′n[U ])

)
> (ε−WL)/2

)
≤
L+L20+1∑
k=L+1

1
k2 ≤

1
L
≤ 2

log logn .

Plugging this into (3.6), it follows that

P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε

∣∣∣ I = k
)
≤ (log logn)40

logn + 2
log logn .

Finally, since the previous inequality holds for any k < n− L− L20, we have

P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε
)

= P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε

∣∣∣ I < n− L− L20
)

+ o(1)

≤ (log logn)40

logn + 1
(log logn)20 + o(1) −→ 0 ,

which is the desired result. �

Second right set U+
r .

Lemma 3.7. For any ε > 0, we have

P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε
)
−→ 0 .
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Proof. Fix 0 < a < 1 and assume n is large enough so that na < n− L− L20. Then, by Lemma 3.3,
we have

P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε
)

≤ P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I < n− L− L20
)

+ P
(
I ≥ n− L− L20)

= P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I < n− L− L20
)

+ o(1) .

Fix now k < n−L−L20 and condition on the event I = k. Let T = Hn[U0] and let (K′n,K∗n) be given
by the coupling in Lemma 3.5. Then, by Proposition 3.4,

P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I = k
)

≤ P
(
∃U ∈ U+

r (k) : wdiam
(

MST(K∗n[U ])
)
> ε
)

≤ P
(
∃U ∈ U+

r (k) : w∗(T ) + |V(T )| × wdiam
(

MST(K′n[U ])
)
> ε
)

≤ P
(
∃U ∈ U+

r (k) : wdiam
(

MST(Kn[U ])
)
> (ε−WL)/(L+ 1)

)
,

where the last step follows from the fact that w∗(T ) ≤ WL conditionally given that I < n − L, that
|V(T )| = L + 1, and that K′n is distributed as Kn. Since x 7→ log3 x

x1/10 is a decreasing function for large
enough x, since any set U ∈ U+

r has size |U | ≥ |UL20 | = L + L20 + 1, and since L = blog lognc → ∞
and WL = blog lognc/ logn→ 0, we can choose n large enough so that, for any U ∈ U+

r

7 log4 |U |
|U |1/10 ≤ 7 log4(L20)

(L20)1/10 = 7 · 204 log4 ·(L)
L2 ≤ ε−WL

L+ 1 .

Then, recalling that U+
r (k) = (Ui, L20 < i ≤ n− k−L) where |Ui| = |U0|+ i = L+ i+ 1, Theorem 2.3

gives us

P
(
∃U ∈ U+

r (k) : wdiam
(

MST(Kn[U ])
)
> (ε−WL)/(L+ 1)

)
≤ P

(
∃U ∈ U+

r (k) : wdiam
(

MST(Kn[U ])
)
>

7 log4 |U |
|U |1/10

)
≤

∑
U∈U+

r (k)

4
|U |log |U |

≤ 1
L+ L20 ,

where the last inequality uses that xlog x ≥ 4x2 for x large enough, along with the fact that |Ui| =
L+ i+ 1. Therefore,

P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε
)

≤ P
(
∃U ∈ U+

r (k) : wdiam
(

MST(Kn[U ])
)
> (ε−WL)/(L+ 1)

)
+ o(1)

≤ 1
L+ L20 + o(1) −→ 0 ,

concluding the proof of the lemma. �

Left set U`.

Lemma 3.8. For any ε > 0, we have

P
(
∃U ∈ U` : wdiam

(
MST(Kn[U ])

)
> ε
)
−→ 0 .
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Proof. Fix a < 1
4 . Thanks to Lemma 3.3, we know that P(I ≥ na) → 0. Moreover, note that under

this event, any set U ∈ U` has size |U | ≥ n − k ≥ n − na. Our strategy now is to prove that, due to
the large size of these sets, conditioning on the event {I < na} does not notably affect the structure of
MST(Kn[U ]).

Let us try to understand how the edge weights {e1, . . . , en−1} behave given that I < na; call Kan the
random weighted graph corresponding to the distribution of Kn conditionally given that I < na. Recall
that {I < na} ∈ σ({Xei

: 1 ≤ i < dnae + L}) and write m = dnae + L − 1 (note that e1, . . . , em are
the only edges affected when we condition on I < na). Let A = {i ≤ m : Xei

≤ W} and let A be the
collection of sets A ⊂ [m] such that there exists i < na with {i, . . . , i+L−1} ⊂ A. Then, by definition,
{A ∈ A} = {I < na}. Now, for any A ∈ A, conditionally given that A = A, the weights of e1, . . . , em
are independent of each other and are distributed as Uniform[0,W ] or Uniform[W, 1], according to
whether or not the index i of the edge ei lies in A. This means that for any x1, . . . , xm ∈ [0, 1], and
any A ∈ A, we have

P
(
∀i ∈ [m] : Xei

≤ xi
∣∣∣ A = A, I < na

)
= P

(
∀i ∈ [m] : Xei

≤ xi
∣∣∣ A = A

)
=
(∏
i∈A

min{xi,W}
W

) ∏
i∈[m]\A

max{xi,W} −W
1−W

 .

Now, using that max{xi,W}−W
1−W ≤ min{xi,W}

W , it follows that

P
(
∀i ∈ [m] : Xei

≤ xi
∣∣∣ A = A, I < na

)
≤ P

(
∀i ∈ [m] : X ′ei

≤ xi
)
,

where (X ′e1
, . . . , X ′em

) are independent Uniform[0,W ]. This implies that there exists a generic weighted
graph K′n = (Kn,X′) with independent weights, where X ′e is a Uniform[0, 1] if e /∈ {e1, . . . , em} and a
Uniform[0,W ] otherwise, and a coupling between K′n and Kan such that X ′e ≤ Xa

e for any e ∈ E(Kn).
We now use this coupling to prove the lemma.

Consider the event

E′ =
{
∀k < na,∀i ∈ [m], ei /∈ E

(
MST(K′n[V (k, n)])

)}
By using two union bounds, we have that

P(E′) ≥ 1−
∑
k<na

∑
i∈[m]

P
(
ei ∈ E

(
MST(K′n[V (k, n)])

))
.

For k and i as in the above sum, if there exists j ∈ V (k, n)\ ei such that the weight of ei is larger than
the weight of the two other edges in the triangle ∆i,j formed by ei and j, then ei is not in the MST
of K′n[V (k, n)]. This means that

P
(
ei ∈ E

(
MST(K′n[V (k, n)])

) ∣∣∣ X ′ei

)
≤ P

(
∀j ∈ V (k, n) \ ei,max(X ′e : e ∈ ∆i,j) > X ′ei

∣∣∣ X ′ei

)
=
(
1− (X ′ei

)2)|V (k,n)|−2

Using that X ′ei
is uniformly distributed over [0,W ] and that |V (k, n)| = n− k + 1, it follows that

P
(
ei ∈ E

(
MST(K′n[V (k, n)])

))
≤ 1
W

∫ W

0
(1− x2)n−k+1dx

≤ 1
W

∫ ∞
0

e−(n−k+1)x2
dx

=
√
π

2W
√
n− k + 1

,
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from which we obtain

P(E′) ≥ 1−
∑
k<na

∑
i∈[m]

√
π

2W
√
n− k − 1

≥ 1−
√
π

2
nam

W
√
n− na − 1

−→ 1 ,

where the last convergence follows from W = 1
logn , m = dnae + L − 1 = dnae + blog lognc − 1, and

a < 1
4 .

Combining the fact that P(I < na)→ 1 with the definitions of Kan and U`, we now have that

P
(
∃U ∈ U` : wdiam

(
MST(Kn[U ])

)
> ε
)

(3.7)

= P
(
∃U ∈ U` : wdiam

(
MST(Kn[U ])

)
> ε

∣∣∣ I < na
)

+ o(1)

≤ P
(
∃k < na : wdiam

(
MST(Kan[V (k, n)])

)
> ε
)

+ o(1) ,

where the last inequality comes from the definition of Kan, and is due to U` = (V (I−1, n), . . . , V (1, n)) ⊂
(V (na − 1, n), . . . , V (1, n))) whenever I < na. Note that the coupling between Kan and K′n only
reduces the weight of the edges e1, . . . , em in K′n relative to Kan, from which it follows that, if
ei /∈ E(MST(K′n[V (k, n)])) for some i ∈ [m], then ei /∈ E(MST(Kan[V (k, n)])). This implies that,
conditionally given E′, the trees MST(Kan[V (k, n)]) and MST(K′n[V (k, n)]) are equal. Using that
P(E′)→ 1, we thus obtain

P
(
∃k < na : wdiam

(
MST(Kan[V (k, n)])

)
> ε
)

(3.8)

= P
(
∃k < na : wdiam

(
MST(Kan[V (k, n)])

)
> ε

∣∣∣ E′)+ o(1)

= P
(
∃k < na : wdiam

(
MST(K′n[V (k, n)])

)
> ε

∣∣∣ E′)+ o(1) .

Finally, consider a coupling between K′n and Kn where X ′e ≤ Xe for any e ∈ E(Kn) and such that
X ′e = Xe whenever e /∈ {e1, . . . , em}. By using that MST(K′n) = MST(Kn) whenever E′ holds, it
follows that

P
(
∃k < na : wdiam

(
MST(K′n[V (k, n)])

)
> ε

∣∣∣ E′)(3.9)

= P
(
∃k < na : wdiam

(
MST(Kn[V (k, n)])

)
> ε

∣∣∣ E′)
= P

(
∃k < na : wdiam

(
MST(Kn[V (k, n)])

)
> ε
)

+ o(1) ,

where we used that P(E′) → 1 for the last equality. Now, using Theorem 2.3 similarly as before, we
obtain that

P
(
∃k < na : wdiam

(
MST(Kn[V (k, n)])

)
> ε
)
−→ 0 .

The proof of this lemma now follows by combining (3.7), (3.8), and (3.9). �

With the above lemmas in hand, the proof of Proposition 3.2 is routine.

Proof of Proposition 3.2. Fix ε > 0 and let W = 1
logn and L = blog lognc. Then

P
(
∃U ∈ U : wdiam

(
MST(Kn[U ])

)
> ε
)

= P
(
∃U ∈ U−r ∪ U+

r ∪ U` : wdiam
(

MST(Kn[U ])
)
> ε
)

≤ P
(
∃U ∈ U−r : wdiam

(
MST(Kn[U ])

)
> ε
)

+ P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε
)

+ P
(
∃U ∈ U` : wdiam

(
MST(Kn[U ])

)
> ε
)
,

and the right hand side converges to 0 by Lemma 3.6, 3.7, and 3.8, proving the proposition. �
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4. Conclusion

4.1. More general weight distributions. The extension of Theorem 1.1 from Uniform[0, 1] to more
general weight distributions is quite straightforward. Fix a probability density function f : [0,∞) →
[0,∞), and let ρ∗ = sup(x :

∫ x
0 f(y)dy < 1). Let X′ = (X ′e, e ∈ E(Kn)) be independent random

variables with density f , and let K′n = (Kn,X′).

Theorem 4.1. Suppose that f(0) > 0, that f is continuous at zero, and that ρ∗ < ∞. Fix any
sequence (Hn, n ≥ 1) of connected graphs with Hn being a spanning subgraph of Kn. Then for any
ε > 0, as n→∞,

(a) with high probability there exists an MST sequence S for (K′n, Hn) with wt(S) ≤ ρ∗ + ε, and
(b) there exists δ > 0 such that with high probability, given any optimizing sequence S = (S1, . . . , Sm)

for (K′n, Hn) with wt(S) ≤ ρ∗ − ε, the final spanning subgraph Hn,m has weight w(Hn,m) ≥
δnw(MST(Kn)).

In particular, cost(K′n, Hn) P−→ ρ∗ as n→∞.

The proof is very similar to that of Theorem 1.1, so we only describe the changes that are required
to prove the more general version.

The proof of the lower bound, part (b), proceeds just as in the case of Uniform[0, 1] edge weights:
for any ε > 0, any optimizing sequence S = (S0, . . . , Sm) for (K′n, Hn) with wt(S) ≤ ρ∗−ε leaves edges
of weight greater than ρ∗ − ε untouched, so all such edges appear in the final subgraph Hn,m. The
number of such edges is Binomial

(
|E(Hn)|,

∫ ρ∗
ρ∗−ε f(x)dx

)
-distributed, so with high probability there

are a linear number of such edges. On the other hand, w(MSTKn)→ ζ(3)/f(0) in probability [7], and
the lower bound follows.

For the upper bound, note that the bounds on the total cost of the optimizing sequences we construct
essentially all have the form A+B where A is the greatest weight of a single edge, and B is the weighted
diameter of the minimum spanning tree of some subgraph of Kn. In order to prove Theorem 1.1, we
used that A ≤ 1, and proved using Theorem 2.3 and Proposition 3.2 that we could take B as close
to zero as we wished (by a careful choice of optimizing sequence). For the edge weights X′, we can
simply replace the bound A ≤ 1 by the bound A ≤ ρ∗. To show that we can make B as close to zero
as we like, we can carry through the same proof as in the Uniform[0, 1] case, provided that versions of
Theorem 2.3 and Proposition 3.2 are still available to us.

To see that Theorem 2.3 and Proposition 3.2 do essentially carry over to the setting of K′n =
(Kn,X′), we make use of the following coupling. For t ∈ [0, ρ∗] let g(t) = P(X ′ ≤ t), so that g(X ′)
is Uniform[0, 1]-distributed. We can thus couple the random weights X′ to independent Uniform[0, 1]
weights X = (Xe, e ∈ E(Kn)) by taking Xe = g(X ′e), and thereby couple K′n = (Kn,X′) to Kn =
(Kn,X). The edge weights X′ = (X ′e, e ∈ E(Kn)) are almost surely pairwise distinct, and on this
event, the ordering of E(Kn) in increasing order of weight is the same for the weights X and X′ and
thus MST(K′n) = MST(Kn).

Since f(0) > 0 and f is continuous, for all u sufficiently small we have f(u) > f(0)/2 and g(u) ≥
uf(0)/2. It follows in particular that if Xe ≤ uf(0)/2 then X ′e ≤ 2Xe/f(0) ≤ u. This observation
implies that, under the above coupling between Kn and K′n, if wdiam(MST(Kn)) ≤ uf(0)/2 then
wdiam(MST(K′n)) ≤ u, and Theorem 2.3 thus yields that for all n sufficiently large,

(4.1) P
(

wdiam(MST(K′n)) ≥ 2
f(0)

7 log4 n

n1/10

)
≤ P

(
wdiam(MST(K′n)) ≥ 7 log4 n

n1/10

)
≤ 4
nlogn .

Similarly, Proposition 3.2 implies that (in the notation of that proposition), for all ε > 0

P
(
∃U ∈ U : wdiam

(
MST(K′n[U ])

)
> 2ε/f(0)

)
−→ 0

as n→∞. But since ε > 0 was arbitrary, this implies that also

(4.2) P
(
∃U ∈ U : wdiam

(
MST(K′n[U ])

)
> ε
)
−→ 0
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for all ε > 0.
All the remaining ingredients of the proof of Theorem 1.1 use only information about the graph-

theoretic structure of MST(Kn), not its weights, and so carry over to the setting of non-uniform weights
(using the fact that MST(K′n) and MST(Kn) have the same distributions as unweighted graphs –
indeed, they are equal under the above coupling). By running the proof of Theorem 1.1 but replacing
all expressions of the form 1+wdiam(F ) by ρ∗+wdiam(F ), and when needed invoking (4.1) and (4.2)
in place of Theorem 2.3 and Proposition 3.2, respectively, we obtain Theorem 4.1.

Before concluding this subsection, we note that if ρ∗ =∞ then for any r > 0, the probability that
at least one edge of Hn has weight at least r tends to 1, so P(cost(K′n, Hn) > r)→ 1 as n→∞. Thus,
in this case we also have cost(K′n, Hn) P−→ ρ∗.

4.2. Open questions and future directions. This work introduces the notion of local minimum
spanning tree searches and proves a weak law of large numbers for the cost of such local searches. The
framework naturally suggests several directions for future research, some of which we now highlight.

• Our main results concern low-weight MST sequences S for randomly weighted complete graphs,
where wt(S) is measured in the L∞ sense: it is the maximum weight of any single step of the
optimizing sequence. However, one may wish to vary the norm used to measure the weights
of optimizing sequences. The other Lp norms are natural alternatives, and correspond to
studying the values

cost p(G, H) = min
{

wt p(S) : S is an MST sequence for (G, H)
}

where

wt p(S) =
(

m∑
i=1

(
wt(S, i)

)p) 1
p

is the Lp norm of (wt(S, i), 1 ≤ i ≤ m).
At first sight, using L1 weights may seem very natural, as it corresponds to the total

weight of all the subgraphs modified by the sequence. Mathematically, however, in the setting
considered in this paper the L1 cost is quite easy to understand. Indeed, for Kn and Hn as in
Theorem 1.1, by considering the sequence S = ([n]) which simply replaces Hn by MST(Kn) in
one step, we obtain that

cost 1(Kn, Hn) ≤ w(Hn) .

Conversely, since any edge of e ∈ E(Hn) \ E(MST(Kn)) must be removed in order to form
the MST, for any MST sequence S = (S1, . . . , Sm), there must exist i ∈ [m] such that e ∈
E(Hn,i−1[Si]). This implies that

wt 1(S) ≥
∑
i∈[m]

w
(
Hn,i−1[Si]

)
≥

∑
e∈E(Hn)\E(MST(Kn))

Xe =
(
1 + oP(1)

)
w(Hn) ,

where the final asymptotic follows from the fact that Hn is chosen independently of X and
that any fixed edge belongs to the MST with probability (n− 1)/

(
n
2
)

= oP(1). Since the lower
bound

∑
e∈E(Hn)\E(MST(Kn)) Xe does not depend on the choice of MST sequence S, it is also a

lower bound on cost1(Kn, Hn), and thus
cost 1(Kn, Hn)

w(Hn) −→ 1

in probability. When p < 1, this argument can be adapted to prove the same convergence
result for cost p(Kn, Hn). However, when p > 1 it is less clear what behaviour to expect, and
in particular it is unclear whether the dependence on the initial spanning subgraph Hn will
play a more complicated role.
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• Another natural modification of the setting is to measure the cost of a step by the size, rather
than the weight, of the subgraph which is replaced by its MST. That is, we may define

wt′(G, H, S) := max
{∣∣E(Hi−1[Si])

∣∣ : 1 ≤ i ≤ m
}
,

and study

cost′(G, H) = min
{

wt′(G, H, S) : S is an MST sequence for (G, H)
}

For this notion of cost, even the behaviour of cost ′(Kn,Kn) is unclear to us; how cost ′(Kn, Hn)
will depend on the starting graph Hn is likewise unclear. However, at a minimum we expect
that cost ′(Kn, Hn) → ∞ in probability, provided that the initial spanning subgraphs Hn are
chosen independently of the weights.
• Our result proves the existence of MST sequences of weight at most (ρ∗ + ε), with high prob-
ability. However, our construction does not yield insight into the ubiquity of such sequences,
and it would be interesting to know whether low-weight MST sequences can be found easily
and without using “non-local” information. For example, suppose that at each step we choose
a subgraph to optimize uniformly at random over all subgraphs of weight at most w. For which
values of w will the resulting sequence be an MST sequence with high probability?
• What is the asymptotic behaviour of cost(Kn, Hn)− ρ∗? In particular, is there a sequence an
such that an(cost(Kn, Hn)− ρ∗) converges in distribution to a non-trivial random variable?
• What happens if (Kn,Xn) is replaced by a different fixed connected, weighted graph Gn =

(Gn,Xn)? How does the asymptotic behaviour of cost(Gn, Hn) depend on Gn?
• What happens if the iid structure of the edge weights of Kn is modified? For example, one
might generate Xn by first taking n independent, uniformly random points P1, . . . , Pn ∈ [0, 1]d,
then letting Xij = |Pi − Pj | be the Euclidean distance between i and j.

Appendix A. Bounds on the weighted diameter

In this section, we prove Theorem 2.3. The proof exploits Kruskal’s algorithm for constructing
minimum spanning trees. We first recall a very useful connection between Kruskal’s algorithm run
on the complete graph with independent Uniform[0, 1] edge weights X = (Xe, e ∈ E(Kn)) and the
Erdős-Rényi random graph process. In this setting, Kruskal’s algorithm may be phrased as follows.
Write N =

(
n
2
)

• Order the edges of E(Kn) in incresasing order of weight as e1, . . . , eN .
• Let F0 = ([n], ∅) be the forest with vertex set n and no edges.
• For 1 ≤ i ≤ N , if ei joins distinct connected components of Fi−1 then let E(Fi) = E(Fi−1) ∪
{ei}; otherwise let Fi = Fi−1.

The final forest FN is MST(Kn).
The Erdős-Rényi random graph process can be described very similarly:
• Order the edges of E(Kn) in increasing order of weight as e1, . . . , eN .
• Let G0 = ([n], ∅) be the graph with vertex set n and no edges.
• For 1 ≤ i ≤ N , let E(Gi) = E(Gi−1) ∪ {ei}.

It is straightforward to see by induction that Fi and Gi always have the same connected components
and, more strongly, that Fi is the minimum spanning forest of Gi (in that each tree of Fi is the
minimum spanning tree of the corresponding connected component of Gi).

We also take G(n, p) to be the subgraph of Kn with edge set {e ∈ E(Kn) : Xe ≤ p}. Since we ordered
the edges in increasing order of weight as e1, . . . , eN , the edge set of G(n, p) is thus {e1, . . . , em}, where
m = m(p) is maximal so that Xem

≤ p. We likewise let F (n, p) be the subgraph of FN consisting of
all edges of FN with weight at most p, and note that F (n, p) = Fm(p).

With this coupling in hand, we next explain our approach to bounding the weighted diameter of
MST(Kn). Our bound has two parts. Fix p ∈ (0, 1), and let Tmax

n,p be the largest connected component
of F (n, p), with ties broken lexicographically. Note that Tmax

n,p is a subgraph of MST(Kn). Further
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write Ln,p for the greatest number of edges in any path of MST(Kn) which has exactly one vertex
lying in Tmax

n,p . Finally, write Wn for the greatest weight of any edge of MST(Kn).

Proposition A.1. For any p ∈ (0, 1),

wdiam
(

MST(Kn)
)
≤ p
(
|Tmax
n,p | − 1

)
+ 2WnLn,p .

Proof. Fix any path P in MST(Kn). Then the set of vertices of P contained in Tmax
n,p form a subpath

of P , since otherwise MST(Kn) would contain a cycle; call this subpath P0. Then P0 contains at most
|Tmax
n,p | vertices, so at most |Tmax

n,p | − 1 edges, and each such edge has weight at most p. Moreover, the
edges of P not lying in P0 form at most two subpaths of P . Each of these subpaths has at most Ln,p
edges, so the number of edges of P which are not edges of P0 is at most 2Ln,p; and the edges of P
which are not edges of P0 all have weight at most Wn. �

To exploit this bound and prove Theorem 2.3, we must bound |Tmax
n,p | and Ln,p, for some well chosen

value of p, and boundWn. The latter bound is the easiest, and we take care of it first. We will need the
following bound on the probability of connectedness of G(n, p). We believe we have seen this bound
in the literature, but were unable to find a reference, so we have included its short proof.

Lemma A.2. Let G ∼ G(n, p). Then

P (G is not connected) ≤ ene
−np

2 − 1

Proof. Let S be a subset of [n] such that S 6= ∅ and S 6= [n]. Then

P
(
S is not connected to Sc in G

)
= (1− p)|S|(n−|S|) .

This implies that

P
(
G is not connected

)
= P

(
∃S ⊆ [n] : 1 ≤ |S| ≤ n/2 and S is not connected to Sc in G

)
≤

∑
S⊆[n]:1≤|S|≤n/2

P
(
S is not connected to Sc in G

)
.

Combined with the previous result, this leads to

P
(
G is not connected

)
=

∑
S⊆[n]:1≤|S|≤n/2

(1− p)|S|(n−|S|) ≤
∑

1≤k≤n/2

(
n

k

)
(1− p)k(n−k) .

Use now that (n− k) ≥ n/2 along with the fact that 1− p ≥ 0 to obtain that

P
(
G is not connected

)
≤

∑
1≤k≤n

(
n

k

)
(1− p)kn/2 =

(
1 + (1− p)n/2)n − 1 .

Finally, by using twice the convexity of exponential, we have

P
(
G is not connected

)
≤
(

1 + e−
pn
2

)n
− 1 ≤ ene

− pn
2 − 1 ,

which is the desired result. �

Fact A.3. For all n sufficiently large, it holds that P(Wn > 3 log2 n/n) ≤ 1/nlogn.

Proof. Under the above coupling, F (n, p) and G(n, p) have the same connected components, so

P
(
Wn > 3 log2 n/n

)
= P

(
F (n, 3 log2 n/n) is not connected

)
= P

(
G(n, 3 log2 n/n) is not connected

)
.

Use now the bound from Lemma A.2 to obtain that

P
(
G(n, 3 log2 n/n) is not connected

)
≤ exp(ne−(3/2) log2 n)− 1 = en/(nlog n)3/2

− 1 ≤ 1/nlogn

the final bound holding for all n sufficiently large. �
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Proof of Theorem 2.3. We prove the theorem by bounding |Tmax
n,p | and Ln,p, for a carefully chosen

value of p (spoiler: we will take p = 1/n + 1/n11/10), then applying Proposition A.1. Our arguments
lean heavily on results from [2], and we next introduce those results (and the terminology necessary
to do so).

For c > 0, let α(c) be the largest real solution of e−cx = 1 − x (the quantity α(c) is the survival
probability of a Poisson(c) branching process). The key to the proof is the fact that the size of the
largest component of G(n, p) is with high probability close to nα(np) when p = (1 + o(1))/n. We now
provide a precise and quantitative version of this statement, with error bounds.

By [1, Exercise 21 (d)], for ε ≥ 0 we have
2ε(1− o(1)) ≤ α(1 + ε) ≤ 2ε ,

the first inequality holding as ε→ 0. In particular,
(A.1) (3/2)ε ≤ α(1 + ε) ≤ 2ε
for all ε ≥ 0 sufficiently small.

For the remainder of the proof, fix p = 1/n+1/n11/10 and write s+ = nα(n log(1/(1−p))+n3/4 and
s− = nα(n log(1/(1−p))−2n3/4. (Aside: for the careful reader who is verifying the connections to the
results from [1], note that s+ = t+ but s− 6= t−, where t+, t− are defined in [1, Proof of Theorem 4.4,
Case 2]). By [1, Exercise 23 (a)], for all n sufficiently large we have

nα(np) ≤ nα(n log(1/(1− p)) ≤ nα(np) + 2n1/2

1− p ,

and using the above bounds on α, this yields
n9/10 ≤ s− ≤ s+ ≤ 3n9/10 ,

for n sufficiently large.
Let Cmax be the largest connected component of G(n, p), and let Crunnerup be its second largest

component. Using the previous inequality on s− and s+, by [1, (4.7)] we have

(A.2) P
(
|Cmax| ≥ 3n9/10) ≤ P

(
|Cmax| ≥ s+) ≤ ne−(25/2)n1/10

;
moreover, by [1, (4.10)], we have

(A.3) P
(
|Cmax| ≤ n9/10) ≤ P

(
|Cmax| ≤ s−

)
≤ 2ne−(25/2)n1/10

;
finally, by [1, (4.10) and(4.11)], we have

(A.4) P
(
|Crunnerup| ≥ n4/5) ≤ 5ne−(25/2)n1/10

.

Furthermore, under the coupling between G(n, p) and F (n, p), we have |Cmax| = |Tmax
n,p |, so (A.2)

immediately gives us that for all n sufficiently large,

(A.5) P
(
|Tmax
n,p | ≥ 3n9/10) ≤ ne−(25/2)n1/10

.

It remains to bound Ln,p. For this, we use (A.3) and a Prim’s-algorithm-type construction to control
the greatest number of connected components of G(n, p) that any path of MST(Kn) lying outside Tmax

n,p

passes through, and use (A.4) to bound the size of those components.
Condition on the graph G(n, p), and fix a connected component C1 of G(n, p) different from Cmax.

Let f1 = u1v1 be the smallest-weight edge with exactly one endpoint in C1, and let p1 be its weight.
Then p1 > p, and f1 is a cut-edge of G(n, p1). It follows that f1 is an edge of MST(Kn). Moreover, by
the exchangeability of the edge weights, the endpoint v1 of f1 not lying in C1 is uniformly distributed
over the remainder of the vertices, so

P
(
v1 6∈ Cmax

∣∣∣ G(n, p)
)
≤ 1− |C

max|
n− |C1|

< 1− |C
max|
n

.

If v1 is not in Cmax, then it lies in another connected component C2. Let f2 = u2v2 be the smallest-
weight edge leaving C1 ∪ C2, and let p2 be its weight. Then f2 is an edge of MST(Kn); to see this,
note that any path γ connecting u2 and v2 which is not just the edge f2 contains some edge e of
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weight strictly greater than p2, meaning that f2 is never the heaviest edge of any cycle. Moreover, the
endpoint v2 of f2 not lying in C1 ∪C2 is uniformly distributed over the remainder of the graph, so once
again

P
(
v2 6∈ Cmax

∣∣∣ G(n, p), v1 6∈ Cmax
)
< 1− |C

max|
n

.

Continuing this process, we construct a sequence C1, . . . , CK of distinct connected components ofG(n, p)
and a sequence f1, . . . , fK of edges of MST(Kn), where where fi = uivi is the smallest-weight edge
from C1 ∪ . . . ∪ Ci to the remainder of the graph, C1, . . . , CK are all connected components of G(n, p)
different from Cmax, and vK ∈ Cmax. To bound the length K of the sequences, we use that at each step
of the construction, the conditional probability that fj = uivj has an endpoint in Cmax given G(n, p)
and given that e1, . . . , ei−1 do not have an endpoint in Cmax, is greater than |Cmax|/n, and so

P
(
K > k

∣∣∣ G(n, p)
)

= P
(
vk 6∈ Cmax

∣∣∣ G(n, p)
)

=
k∏
i=1

P
(
vi 6∈ Cmax

∣∣∣ G(n, p), v1, . . . , vi−1 6∈ Cmax
)

≤
(

1− |C
max|
n

)k
Note now that any path in MST(Kn) with one endpoint in C1 and the other endpoint in Cmax

passes through C1, . . . , CK and edges f1, . . . , fK . Since each of the components C1, . . . , CK has size at
most that of Crunnerup, it follows that the greatest number of edges in any path with one endpoint in
C1 which only intersects Cmax in one vertex is at most K|Crunnerup|. Taking a union bound over the
possible choices for C1 among all components of G(n, p) different from Cmax (there are less than n of
them), it follows that

P
(
Ln,p > k

∣∣Crunnerup∣∣ ∣∣∣ G(n, p)
)
≤ nP

(
K > k

∣∣∣ G(n, p)
)

≤ n
(

1− |C
max|
n

)k
.

Recall now the tail bounds for |Cmax| and |Crunnerup| from (A.3) and (A.4) and use that

P
(
Ln,p > n9/10 log2 n

∣∣∣ G(n, p), |Cmax| > n9/10, |Crunnerup| < n4/5
)

= P
(
Ln,p > (n1/10 log2 n) · n4/5

∣∣∣ G(n, p), |Cmax| > n9/10, |Crunnerup| < n4/5
)

≤ n
(

1− n9/10

n

)n1/10 log2 n

≤ ne− log2 n

to obtain

P
(
Ln,p > n9/10 log2 n

)
≤ 7ne−(25/2)n1/10

+ ne− log2 n ≤ 2
nlogn ,(A.6)

the last bound holding for n large enough.
We can now conclude the proof of Theorem 2.3. By Fact A.3, for n sufficiently large, P(Wn >

3 log2 n/n) ≤ 1/nlogn. Combined with (A.6), this implies that

P
(

2WnLn,p >
6 log4 n

n1/10

)
≤ 3
nlogn .
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Using the bound of Proposition A.1 and combining it with the previous inequality and (A.5), we obtain
that

P
(

wdiam
(

MST(Kn)
)
> 3pn9/10 + 6 log4 n

n1/10

)
≤ P

(∣∣Tmax
n,p

∣∣ ≥ 3n9/10
)

+ P
(

2WnLn,p >
6 log4 n

n1/10

)
≤ ne−(25/2)n1/10

+ 3
nlogn ≤

4
nlogn ,

the last inequality holding when n is large. Finally, since p = 1/n + 1/n11/10, for n large we have
3pn9/10 + 6 log4 n

n1/10 < 7 log4 n
n1/10 , so the bound of Theorem 2.3 follows.
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