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Abstract. We study the local evolution of Prim’s algorithm on large finite weighted graphs.
When performed for n steps, where n is the size of the graph, Prim’s algorithm will construct
the minimal spanning tree (MST). We assume that our graphs converge locally in probability
to some limiting rooted graph. In that case, Aldous and Steele already proved that the local
limit of the MST converges to a limiting object, which can be thought of as the MST on the
limiting infinite rooted graph.

Our aim is to investigate how the local limit of the MST is reached dynamically. For this,
we take tn+ o(n) steps of Prim, for t ∈ [0, 1], and, under some reasonable assumptions, show
how the local structure interpolates between performing Prim’s algorithm on the local limit
when t = 0, to the full local limit of the MST for t = 1. Our proof relies on the use of the
recently developed theory of dynamic local convergence. We further present several examples
for which our assumptions, and thus our results, apply.
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1. Introduction

1.1. Background and novelty. In this paper we analyse the evolution of the local structure
of the subtree discovered by Prim’s algorithm [54] as the number of steps in the algorithm
varies. This process is one of the most commonly used greedy algorithms to find the minimal
spanning tree (MST) of a rooted weighted graphs. However, Prim’s algorithm is different from
other greedy methods to construct the MST, such as Bor̊uvka’s algorithm [52] and Kruskal’s
algorithm [42], as it discovers the tree locally starting from a given root. More precisely, it
sequentially adds the neighbouring edge with lowest weight that does not form a cycle with the
current component. When running Prim’s algorithm to completion, the outcome is known to
be the MST of the whole finite graph. In that case, the local limit has already been analysed
in [6, Theorem 5.6], where the authors show local convergence towards the minimal spanning
forest of the infinite graph.

The novelty of our paper is the study of the outcome of Prim’s algorithm when only con-
sidering a partial number of steps. More precisely, we provide a characterisation of the limit
of Prim’s algorithm as a function of t when it runs for tn + o(n) steps on a graph with n
vertices, for t ∈ [0, 1]. This provides a process on rooted weighted graphs and fits within the
recent research field of dynamic local convergence [26, 47]. This process convergence provides
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key insights on the evolution of the structure of Prim’s algorithm when the number of steps
grows.

One of the noteworthy interpretations of our main result (Theorem 1.1), is how Prim’s
algorithm discovers the local neighbourhood of the MST around the root. Indeed, our result
states that it first spends a sub-linear time in the local neighbourhood, during which it creates
the invasion percolation cluster, after which it explores far away parts of the graph, until it
reaches a linear number of steps, where it regularly returns to the local neighbourhood and
adds edges of the minimum spanning forest of larger and larger weights. Our result further
shows that the local structure of the graph does not change as soon as we run Prim’s algorithm
for n− o(n) steps, allowing for a sub-linear correction. In particular, this means that the last
o(n) steps of the algorithm always explore faraway neighbourhoods of the graph.

1.2. Main result. For the rest of this work, we consider a sequence (Gn)n≥1 of graphs
on n vertices, which converges locally in probability towards a rooted graph (G, o). Local
convergence was defined independently by Benjamini and Schramm [12] and Aldous and
Steele [6]; see [36, Chapter 2] for an extensive introduction to local convergence. We further
endow (Gn)n≥1 and G with independent Uniform([0, 1]) edge weights and sample a random
vertex on from Gn; we write G = (G, o,w) and Gn = (Gn, on, wn) for the corresponding
rooted weighted graphs and call these the standard extensions of (Gn)n≥1 and (G, o). We are
now interested in the local limit of Pkn(Gn), defined as the subtree obtained after kn steps of
Prim’s algorithm, when n → ∞ and for arbitrary increasing sequences (kn)n≥1.

As discussed above, when kn = n, then Pkn(Gn) is exactly the MST of (Gn, wn), which con-
verges locally towards the minimum spanning forest FG of G [6, Theorem 5.4] (see Section 2.2
for exact definitions). Using this result, we know that there exist growing radii (rn)n≥1 such
that (Gn,Pn(Gn)) can asymptotically be coupled with (G,FG) on balls of radius rn.

We say that the sequence of functions (kn(t))n≥1,t∈[0,1] is a linearly growing sequence with
respect to (Gn)n≥1 if kn(0) = rn and kn(t)/n → t as n → ∞ for all t ∈ [0, 1] (see Section 2.5
for a more precise definition of linearly growing sequences). Our main result characterises
the behaviour of Prim’s algorithm for any arbitrary linearly growing sequence. In particular,
we investigate the convergence of the rooted graph obtained by applying Prim kn(t) steps as
a stochastic process on rooted graphs, using the recently developed theory of dynamic local
convergence [47].

On the infinite graph G, we note that the minimum spanning forest FG contains the subtree
Pk(G) obtained by running Prim’s algorithm on G = (G, o,w) for any arbitrarily chosen
number of steps k. Thus, FG also contains the limit P∞(G) of Prim’s algorithm, corresponding
to the invasion percolation cluster. We now generalise this definition to the expanded invasion
percolation cluster at level p, which we denote by FG

+(p). We define this as the union of the

invasion percolation cluster and the edges in the minimal spanning forest FG with weight less
than p (see Section 2.2 for a more precise definition). This tree is fundamental in characterising
the limit of Prim’s algorithm and we now provide the two assumptions required for our main
theorem to hold.

Given a rooted weighted graph G = (G, o,w), write CG
o (p) for the component containing

o when only keeping edges with weight less than p and let θ(p) = θG(p) be the (annealed)
survival probability of o at level p in G, i.e.,

θ(p) = P
(∣∣CG

o (p)
∣∣ = ∞

)
.(1)
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We further define its critical value by pc = inf{p : θ(p) > 0} and its (pseudo-)inverse, for
t ∈ [0, 1), by

θ−1(t) = inf
{
p : θ(p) > t

}
.(2)

For convenience, we define θ−1(1) = 1. When θ(p) > 0, it is possible for the root of G to be
in an infinite component at level p. It is thus natural to wonder what the rest of the graph
looks like in the case where θ(p) > 0 but the root does not belong to an infinite component.
Our first assumption states that, whenever θ(p) > 0, there exists a component in FG which is
infinite:

Assumption 1 (Percolation function and infinite percolation components). The (infinite)
rooted and weighted graph G is said to satisfy the local percolation of a giant assumption if,
for any p, the following equivalence holds:

θ(p) > 0 ⇐⇒ P
(
∃v ∈ V (FG) :

∣∣CG
v (p)

∣∣ = ∞
)

= 1 .

Assumption 1 entails that even when the root does not percolate at level p, if p is such
that θ(p) > 0, then there are vertices close to the root that percolate. It plays a key role
in ensuring that the giant component in the finite graph is locally visible, and can thus be
reached by Prim’s algorithm after a bounded number of steps.

In Section 4, we discuss why this assumption is required and provide examples of (random)
graphs that do not satisfy it. We further conjecture that this assumption can be omitted and
the main result would remain true, since we did not find counterexamples to prove otherwise.

Besides the relation between the probability to have an infinite component and the existence
of an infinite component in the minimum spanning forest, we need a further assumption on
θ. Indeed, since θ plays a key role in the evolution of the limit (see Theorem 1.1), it is also
important for this function to be smooth enough, as stated in the following assumption:

Assumption 2 (Smoothness of the percolation function). The (infinite) rooted weighted graph
G is said to satisfy the smooth percolation assumption if p 7→ θ(p), considered as a function
on (pc, 1], is continuous and strictly monotone.

We emphasize that G is possibly random, and that θ(p) is the annealed percolation proba-
bility, where we take the average w.r.t. the random graph G and the edge statuses on it. Note
that Assumption 2 implies that t 7→ θ−1(t) is continuous and strictly increasing as a function
from [0, 1] to [pc, 1], with θ−1(0) = pc, which, in fact, is the main property that θ needs to
satisfy for our proofs.

While we believe Assumption 2 holds in most cases, it is still possible to create counterex-
amples where θ jumps multiple times (see Section 4). However, these examples tend to also
not satisfy Assumption 3 below, and so it is unclear to us whether Assumption 2 is redundant
or not. Without proof of the contrary, we include it and keep its removal as an open problem.

The previous two assumptions only pose conditions on the local limit of the graph sequence.
We next state an assumption to make sure that the sequence itself behaves as desired. Given
the relation between the MST and connected components at level p in the percolated graph, we
next state an assumption linking the survival probability and size of the giant, as introduced
in [36, Theorem 2.28] for general (unpercolated) graph sequences:
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Assumption 3 (Percolation giant is almost local). The sequence of rooted weighted graphs
(Gn)n≥1 is said to satisfy the percolation giant is almost local assumption if, for any p,

lim
k→∞

lim sup
n→∞

1

n2
E
[∣∣∣{u, v ∈ V (Gn) :

∣∣CGn
u (p)

∣∣ ≥ k,
∣∣CGn

v (p)
∣∣ ≥ k, CGn

u (p) ∩ CGn
v (p) = ∅

}∣∣∣] = 0 .

Assumption 3 allows us to relate the size of the largest component in Gn at level p to θG(p)
and we invite the reader to take a look at Propositions 2.5 and 2.6 to gain a first idea of the
importance of this assumption. This assumption plays an essential role in our main theorem,
as it is a key property required to connect the behaviour of percolated components between
finite and infinite graphs

With these assumptions in hand, we now have all the ingredients to state our main theorem.
The following result relies on the local process convergence, which corresponds to the natural
extension of the local topology on graphs to the process topology (see Section 2.6 for more
details):

Theorem 1.1 (Local limit of Prim’s algorithm). Let (Gn)n≥1 be converging locally in prob-
ability to (G, o). Let (Gn)n≥1 and G be the respective standard expansions of (Gn)n≥1 and
(G, o). Define θ as in (1) and let k = (kn(·))n≥1 be a linearly growing sequence with respect to
(Gn)n≥1 as defined in Section 2.5. If G satisfies Assumption 1, θ(p) satisfies Assumption 2,
and (Gn)n≥1 satisfies Assumption 3, then(

Pkn(t)(Gn)
)
t∈[0,1]

lpc−→
(
FG
+

(
θ−1(t)

))
t∈[0,1]

,

where the convergence occurs according to the local process convergence defined in Section 2.6.

The proof of Theorem 1.1 can be found in Section 3.3. It can be reduced to three main
steps. First, we prove the one-dimensional convergence of Prim’s algorithm towards the
correct limit. This proof boils down to the fact that the largest component in Gn(p) has size
approximately nθ(p), and so Prim’s algorithm applied nθ(p) steps will first quickly reach the
largest component and then remain in that component, explaining the structure of FG

+(p).
Second, we prove that the previous one-dimensional convergence can be extended to the
finite-dimensional distributions, and show that the limit satisfies the assumptions of the local
process convergence as defined in Section 2.6. Finally, we prove the tightness of the process
(as defined in Section 2.6), and complete the proof of Theorem 1.1, in Section 3.3.

It is worth mentioning that the previous convergence not only occurs as a process conver-
gence but also jointly with the convergence of Gn towards G. This is a direct consequence of
the proof method from Section 3, where we start by coupling Gn and the minimal spanning
tree on it, to G and the minimal spanning forest on it, and show the convergence of Theo-
rem 1.1 under this coupling. We decided not to state it as a joint convergence here for clarity.

Organisation. This paper is organised as follows. In Section 2 we give some background
on the different definitions from the introduction and state some useful preliminary results.
In Section 3 we then apply the previous results in order to prove Theorem 1.1. Finally, in
Section 4, we consider a few interesting specific cases and examples. We also invite the reader
to take a look at Appendix A for a list of often-used symbols and notations. We now provide
a more detailed review of the literature relevant to this work.
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1.3. Related literature. The introduction of local convergence [6, 12] at the start of this
millennium has formalised the connection between analysing graphs and graph processes on
different scales. The power of this technique is demonstrated in our results for Prim’s al-
gorithm, but has also been demonstrated for many different processes in the literature. We
present an overview of how the introduction of local convergence gave rise to a formal local
description of graphs and how this was used to locally analyse global graph properties and
graph processes. Next, we emphasise the importance of the MST and present the state-of-
the-art results for the MST on random graphs, both from a local and global perspective.

Local convergence of graphs. The early applications of local convergence show locally
tree-like behaviour for popular sparse random graphs. Key examples include the Erdős-
Rényi graph [22], the uniform random graph and the configuration model [22], inhomogeneous
random graph [17] and [36, Chapter 3], and the preferential attachment model [13, 30]. Recent
years have seen an increasing interest in this line of work and have extended the results to more
complex graphs such as uniform planar graphs [58], spatial inhomogeneous random graphs [39],
Gibbs random graphs [28], and random intersection graphs [43]. For more extensive overviews,
we refer to [10, 36]. While the field of local convergence for random graphs developed, others
investigated how to optimally make use of these novel results. Let us mention two main
applications of local convergence results: First, local convergence proved itself to be useful
in analysing global graph properties, such as the existence, size and uniqueness of the giant.
Second, processes on random graphs can often be analysed from a local perspective. Next,
we give a short overview of both applications.

Local analysis of global objects. Many sparse random graphs are characterised by their
local limit to such a strong degree, that their structure can be used to analyse global graph
properties. [39, Chapter 2.5] illustrates this in detail for different graphs measures, such as
the global cluster coefficient and assortativity coefficient for graphs that have a uniformly
integrable second and third moment for the degree of a uniformly chosen vertex respectively.
Related is the PageRank distribution [31] that is also well studied from a local perspective.

Such results also extend to an analysis of the number of spanning trees for large sparse
graphs [45, 55], to the spectral measure for locally tree-like graphs [14, 18] and to graph
colourings [20]. A similar analysis for the critical percolation probability for transitive graphs
has seen much attention over the years. First conjectured that this was indeed a local property
(see [11] for details), many works have since been extending the class of graphs for which the
critical percolation probability was indeed local, see [21] and the references therein. The
conjecture was finally proven in full generality in [27]. Finally, recent work shows that, under
some conditions on the graph, the giant component can be completely characterised from a
local perspective [35, 36, 37]. In this case, the giant was also described as ‘almost local’.

We finally remark that these results find direct practical applications in the mathematical
physics literature via, for example, the factor model [23] and the Ising model. The latter model
has received a significant amount of attention. Here one assigns labels (or spins) {−1, 1} to
a vertices of a random graph according to the Boltzmann distribution, which forms a central
representation for ferromagnetic fields. The works of [22, 23, 49] show that for a multitude
of locally tree-like graphs the spin distributions can be analysed from the local limit. These
works have later been extended to different graphs and to different properties of the Ising
model from both a theoretical and practical point of view, see [4, 8, 23, 25, 59].

Processes on a random graph. A second key development initiated by local convergence
is the translation of processes on graphs to their local limit. Ideally one hopes that analysing
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a process on a random graph is similar to analysing the process on the local limit. We
first observe such a phenomenon on dynamic random graphs, for example the Erdős-Rényi
and inhomogeneous random graph [26] and the random intersection graph [47]. Interacting
particle systems, where states of vertices develop via a Markov or diffusion process based on
their neighbours, have been extensively analysed, see [44] and the references therein, where
the authors show that the vertex interaction translates to the local limit. Related examples
have also been studied, such as the contact process [50], SIR epidemic models [48], and voter
models [40].

Algorithms for the minimum spanning tree. There are many classical construction
algorithms for the MST dating back to the early 20th century, such as Bor̊uvka’s algorithm
[52], Kruskal’s algorithm [42] and Prim’s algorithm [54], which generally run in O(E log(V ))
time complexity [53]. From a discrete optimisation point of view, the main interest in the
MST is to improve the efficiency of search algorithms, see for example [41] and the reference
therein.

For this work, the geometry of the MST in disordered networks is of significant importance.
To the best of our knowledge, interest in the topic arose in the mid-eighties for properties of
MST on the complete graph with random edge weights [29] and for the Euclidean minimum
spanning tree [5, 56] and the references therein. This was later further generalised in [7].
Shortly after the introduction of local weak convergence in the beginning of the new millen-
nium, Aldous and Steele [57] examined the MST on the weighted complete graph, and related
that to a minimum spanning forest on the Poisson weighted infinite tree (PWIT). This work
was later extended to general graphs in [6].

The geometry and other properties of the MST find many applications in applied physics,
see for example [24] and the references therein. A classic example of such geometrical property
is the diameter of the MST, often used as an upper bound for the typical distance between
uniform vertices. These results hold for many classes of disordered networks [19], due to the
universality of the MST [24].

Local limits for the minimum spanning tree. So far, local convergence of the MST (i.e.,
kn = n) has been shown for general graphs, see [6, Theorem 5.4] and more in depth for the
complete graph with random edge weights [1, 51].

Global limits for the minimum spanning tree. The global perspective of the MST is
usually captured by its scaling limit. This was first derived for the complete graph in [2],
and is closely related to the Erdős-Rényi random graph. For other random graph models, the
global geometry of the MST has also been analysed before, such as the 3-regular graph [3] and
the inhomogeneous random graph with power-law degrees [15]. Interestingly, while the scaling
limit of these MSTs are intimately related to large critical percolation cluster on them, the
Hausdorff dimension of the MST is generally larger than that of critical percolation clusters.
Indeed, for the complete graph, the Hausdorff dimension of critical percolation clusters equals
2 (as for the closely related continuum random tree), while for the scaling limit of the MST
it is 3 [2].

Quenched versus annealed. As one can consider this model as random disorder (the uni-
form edge weights) in a random environment (the random graph), we emphasise that our
results are for the annealed setting, that is, where one averages out over the random environ-
ment. This is in contrast with the quenched setting, where one shows results for an almost
sure realisation of the environment. This distinction is important as it is known that results
can differ between regimes, see for example [9] and the references therein.
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1.4. Discussion of the results. In the following, we discuss the implications of Theorem 1.1.
We first illustrate how this result completely describes how Prim’s algorithm discovers a
random graph from a local perspective. We provide simulations of Prim’s algorithm on large
graphs and show how it follows patterns found in our theoretical results. Finally, we show
that our results also provide a good description of the addition times of edges.

Discovering the MST. Analysing the local limit of the MST on (random) graphs via Prim’s
algorithm involves two limits: one relating to the graph size (i.e., n) and the other relating
to number of steps of Prim’s algorithm (i.e., k). Except for the clear condition n ≥ k, there
is some freedom in how these limits are taken. Theorem 1.1 illustrates the behaviour for
different choices of the relation between n and k. First, by taking k = o(n), we locally obtain
the invasion percolation cluster of the local limit FG

+(pc) = P∞(G). This agrees with simply
taking these limits sequentially, i.e., taking n → ∞ followed by k → ∞.

While clearly the local neighbourhood of the MST is not fully explored in this setting
(consider the example of a single vertex attached to the root with a very high weight), this
directly implies that k growing (arbitrary slowly) in n is not sufficient to discover the full
local neighbourhood of the MST (at least when pc < 1). Indeed, for some small ε > 0, at
time εt, by Proposition 3.1, Prim’s algorithm is discovering the largest percolation component
of the graph percolated at θ−1(ε) > pc, which is located outside of the local neighbourhood.
By Proposition 2.6, the largest component is of linear size when percolated at p > pc, we
find that only after a linear number of steps, Prim’s algorithm is able to return to the local
neighbourhood. Indeed, our results state that, in the time interval [cn, (c + δ)n], Prim’s
extends its search in the local neighbourhood by connecting edges with weights in between
θ−1(c) and θ−1(c + δ).

The local limit of the MST is therefore constructed in two phases. In the first phase,
consisting of o(n) steps, Prim’s algorithm basically explores the invasion percolation cluster
on the local limit. In the second phase, after spending εn steps away from the root, it returns
to the neighbourhood of the root, and adds edges and groups of vertices that belong to the
MST. This was also noted in [1] for the complete graph.

Simulations. Our results imply that there are vertices in the local neighbourhood that are
explored very early by Prim’s algorithm (first phase) and some that are explored very late
(second phase). Such behaviour implies that it takes around n(1 − o(1)) steps for Prim’s
algorithm to fully discover the local limit of the MST, as we confirm in a simulation study.

In Figures 1, 2, and 3 we ran Prim’s algorithm on large grids, triangular lattices, and
3-regular graphs respectively. While all figures show about 1000 vertices of the graph, the
simulations were run on a larger graph extending past the boundary of the images, in order
to better reproduce the effect of a local limit. In all cases, we can see that some edges close to
the root are added late in the algorithm (i.e., they are red). Finally, in Figure 4, we provide
a representation on a much larger scale with a 2000 × 2000 grid; in this case, we once again
see that late components, in red, are added in every neighbourhood around the root.
Addition and completion times. We next use our results to describe the addition times
for edges in the neighbourhood of the root, and the completion time of the neighbourhood of
the root in the MST. For r ≥ 0, we define the addition time

τn(r,m) = min
{
k :

∣∣Pk(Gn) ∩Br(Gn)
∣∣ = m

}
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Figure 1. Simulation of Prim’s algorithm on a large grid, starting from the
root (in turquoise, in the middle). Vertices and edges are coloured based on
the step at which Prim’s algorithm adds them to the current tree (from green
to yellow, and finally red) and the three images correspond to running Prim’s
algorithm for n/3, 2n/3, and n steps.

Figure 2. Simulation of Prim’s algorithm on a large triangular lattice, start-
ing from the root (in turquoise, in the middle). Vertices and edges are coloured
based on the step at which Prim’s algorithm adds them to the current tree
(from green to yellow, and finally red) and the three images correspond to
running Prim’s algorithm for n/3, 2n/3, and n steps.

Figure 3. Simulation of Prim’s algorithm on a large 3-regular graph, starting
from the root (in turquoise, in the middle). Vertices and edges are coloured
based on the step at which Prim’s algorithm adds them to the current tree
(from green to yellow, and finally red) and the three images correspond to
running Prim’s algorithm for n/3, 2n/3, and n steps.

to be the time that the mth vertex in Br(Gn) is added. Additionally, for fixed r ≥ 0, we define
the completion time Cn(r) by

Cn(r) = min
{
k : Br

(
Pk(Gn)

)
= Br

(
Pn(Gn)

)}
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Figure 4. Simulation of Prim’s algorithm on a 2000 × 2000 grid, starting
from the root (in turquoise, in the middle). Each pixel corresponds to a single
vertex and vertices and edges are coloured based on the step at which Prim’s
algorithm adds them to the current tree (from green to yellow, and finally red,
with extra shaded fluctuations to highlight the local behaviour).

i.e., Cn(r) denotes the first time that Prim’s algorithm has discovered the complete r-neighbourhood
of the MST. Our next theorem concerns the convergence in distribution of the addition and
completion times:

Theorem 1.2 (Limits of addition and completion times). Under the assumptions of Theorem
1.1, as n → ∞, the process (

τn(r,m)

n
,
Cn(r)

n

)
m,r≥0

converges in distribution to the process of addition and completion times on the local limit G.

Note that τn(r,m)/n converges to zero precisely for the edges that are reached by the
invasion percolation cluster on the local limit. Both limits can be made more explicit using
only the structure of the limit. In particular, one can check that

Cn(r)

n
−→
n→∞

max
{
θ
(
w(e)

)
: e ∈ E

(
Br(FG)

)
\ E

(
P∞(G)

)}
,

since any edge in P∞(G) is explored in o(n) steps and all edges connected to P∞(G) via a
path of weight less than p are explored in the first θ(p)n + o(n) steps of Prim’s algorithm.

2. Background work and preliminary results

In this section we provide further details on the definitions from Section 1.2. We start with
background notations and definitions regarding graphs in Section 2.1. We then define the
minimum spanning forest, the minimum spanning tree, the invasion percolation cluster, and
the expanded invasion percolation cluster in Section 2.2. In Section 2.3, we study properties
related to the levels in an infinite rooted weighted graph, more precisely, the time it takes for
Prim’s algorithm to reach an infinite component at level p, and the regularity of the survival
probability. In Section 2.4, we introduce properties of the local convergence and discuss its
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consequences in Section 2.5. Finally, in Section 2.6 we extend the local convergence to the
local process convergence from Theorem 1.1.

2.1. Graph notations. A locally finite graph (or simply graph) G = (V (G), E(G)) is a pair

of sets, where V (G) is the arbitrary set of vertices, E(G) ⊆
(
V (G)
2

)
= {{u, v} : u, v ∈ V (G)} is

the set of edges, composed of (unordered) pairs of vertices, and for any v ∈ V (G), the set of
neighbors {u ∈ V (G) : {u, v} ∈ E(G)} is finite.

For any graph G = (V (G), E(G)), a pair (G, o) with o ∈ V (G) is called a rooted graph, a
pair (G,w) with w : E(G) → R injective (or w : E → R with E(G) ⊆ E) is called a weighted
graph, and the subsequent triplet (G, o,w) is called a rooted weighted graph. We further
consider (G, o,w), ((G, o), w), and ((G,w), o) to be equivalent, allowing us to directly go from
rooted or weighted graphs to rooted weighted graphs. In these settings, o is referred to as the
root and w as the weights. We often denote weighted graphs with a curly capital letter G and
rooted weighted graphs with a double bar capital letter G.

We let the size of G be its number of vertices |G| = |V (G)|, and say that G is finite
when |G| < ∞. For any two graphs G and G′, we define their union and intersection by
G ⊗ G′ = (V (G) ⊗ V (G′), E(G) ⊗ E(G′)) where ⊗ ∈ {∪,∩}. We then say that G and G′

intersect when V (G ∩G′) ̸= ∅ (note that it might have zero edges). Finally, we extend these
notations by allowing one of the two graphs to be rooted, weighted, or rooted weighted, and
by letting the union or the intersection be itself rooted, weighted, or rooted weighted with
the same parameters. Observe that the union requires the weights to be defined on both edge
sets and that the intersection requires the root to be part of both vertex sets, which is always
the case here.

Given a (possibly random) finite graph G, the standard extension of G is the random
rooted weighted graph G = (G, o,w) where o is chosen uniformly at random among V (G) and
(w(e))e∈E(G) is a family of independent Uniform([0, 1]). Similarly, the standard extension of a
rooted (not necessarily finite) graph (G, o) is the random rooted weighted graph G = (G, o,w)
where (w(e))e∈E(G) is a family of independent Uniform([0, 1]) random variables. In these
definitions, the weights in w are always independent of (G, o).

For any weighted graph G = (G,w), we denote the graph obtained by only keeping edges
of weight less than p by G(p), that is, G(p) = (Gp, w) with V (Gp) = V (G) and E(Gp) = {e ∈
E(G) : w(e) ≤ p}; we similarly define G(p) = ((G,w)(p), o) when G = (G, o,w) is a rooted
weighted graph. Observe that, if G is a graph and G is its standard extension, then Gp as
previously defined has the distribution of G percolated at level p, however we also implicitly
couple all such (Gp)p∈[0,1] here so that p 7→ Gp is càdlàg.

For any weighted graph G = (G,w) and any v ∈ V (G), we denote the connected component
of v in G(p) by CG

v (p). Moreover, if G is finite, we denote the connected components of G(p)

in decreasing order of size by CG
(1)(p), CG

(2)(p), . . . (breaking ties arbitrarily). We also extend

these notations to rooted weighted graphs. In both cases (weighted or rooted weighted), the
components are considered as standard graphs and we drop the weights (and the root) when
considering these components. Observe that, if G is a graph and G is its standard extension,
then CG

v (0) = ({v},∅) and CG
v (1) = CG

(1)(1) = G for any v ∈ V (G).

2.2. Minimum spanning forest and expanded invasion percolation cluster. Let G =
(G,w) be a weighted graph. We call the graph with vertex set V (FG) = V (G) and edge

set defined by e = {u, v} ∈ E(FG) if and only if the two components CG\{e}
u (w(e)) and

CG\{e}
v (w(e)) are disjoint and not both infinite (where G \ {e} denotes the graph G where the
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edge e is removed) the minimum spanning forest of G, and denote it FG . For a rooted weighted

graph G = (G, o,w), we let FG = F(G,w) be the minimum spanning forest of G and further
define FG = (FG, o, w) to be the rooted weighted minimum spanning forest of G. Since this
definition may yield a disconnected forest when G is infinite or disconnected, and we are only
interested in its local limit, we actually reduce FG to the unique tree containing the root. We
still refer to it as a forest, although it is actually a tree.

In the case where G (or G) is finite and connected, the forest FG is always connected and
usually referred to as the minimum spanning tree of G, which we denote TG here (or TG

for its rooted weighted counterpart). There exist several efficient algorithms to compute the
minimum spanning tree and we now present one of them, Prim’s algorithm [54], while not
providing the proof that it indeed outputs the minimum spanning tree.

Given a connected rooted weighted graph G = (G, o,w), we recursively define a sequence
of trees as follows. First, we start from T1 = ({o},∅). Then, given Tk−1 = (Vk−1, Ek−1)
with k ≤ |G|, let {uk, vk} be the edge of minimal weight among all edges with exactly one
end in Tk−1. Assume without loss of generality that uk ∈ Vk−1 and vk /∈ Vk−1. Then, we let
Tk = (Vk−1 ∪ {vk}, Ek−1 ∪ {uk, vk}) be the tree obtained by adding this edge to Tk−1. This
defines a sequence of growing trees such that T|G| is the minimum spanning tree of G when
the graph is finite. If that is the case, we also let Tk = T|G| when k ≥ |G|. For any k ≥ 1, we
now let Pk(G) be the rooted weighted outcome of this process after k steps, that is

Pk(G) = (Tk, o, w) .

We further extend this definition to k = ∞ by letting

T∞ =

⋃
k≥0

Vk,
⋃
k≥0

Ek


and setting P∞(G) = (T∞, o, w) as before. We observe that P∞(G) is always a subtree of FG.

When G is infinite, P∞(G) is actually a commonly studied object, usually referred to as the
invasion percolation cluster. For this reason, we now define the expanded invasion percolation
cluster, written as FG

+(p), to be the union of the invasion percolation cluster and the edges

in the minimal spanning forest of weight at most p, denoted by E(FG(p)), obtained by only
keeping edges in FG of weight less than p. More precisely, FG

+(p) is the rooted weighted graph
which has the same vertex set, root, and weights as G, and with edge set defined by

E
(
FG
+(p)

)
= E

(
P∞(G)

)
∪ E

(
FG(p)

)
.

We again observe that the expanded invasion percolation cluster is likely not connected, and
thus only consider the component containing the root, making FG

+(p) a tree again.

2.3. Components in an infinite graph. In this section, we consider an infinite rooted
weighted graph G = (G, o,w). Following the definition of θ = θG in (1), we are interested in
the time it takes for Prim’s algorithm to reach an infinite component from the root. More
precisely, for any p ∈ [0, 1], we let K(p) = KG(p) be the random variable

K(p) = min
{
k : ∃v ∈ V

(
Pk(G)

)
,
∣∣Cv(p)

∣∣ = ∞
}
− 1 .(3)

From this definition, we observe that K(p) = ∞ when Prim’s algorithm never explores an
infinite component at percolation level p, and K(p) = 0 is equivalent to the root o already
belonging to an infinite component at percolation level p. In particular, it follows that p 7→
K(p) is decreasing (under the coupling of G(p) using its edge weights) with K(0) = ∞ and
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K(1) equals 0 if G is infinite, ∞ otherwise. Finally, when K(p) < ∞, we let v(p) = vG(p) be
the (K(p) + 1)-th vertex explored during Prim’s algorithm and we note that this implies that
|CG

v(p)(p)| = ∞; in the case K(p) = ∞, for convenience, we let v(p) = ∞ be a “boundary”

vertex and define CG
v(p)(p) = (∅,∅) to be the empty graph.

In order to see the importance of K(p), we start with a result showing the relation between
its value and Assumption 1:

Proposition 2.1 (Infinite components reached by Prim). Let G be a rooted weighted graph.
Then, for any p ∈ [0, 1],

K(p) = ∞ ⇐⇒ ∀v ∈ FG :
∣∣CG

v (p)
∣∣ < ∞ .

In words, Prim’s algorithm never reaches an infinite component at level p if and only if all
components at level p reachable from o in the minimum spanning forest have finite sizes.

Assumption 1 states that the event on the right-hand side has probability zero when θ(p) >
0. Thus, in this case, we obtain that K(p) < ∞ a.s.

Proof. Note first that CG
v (p)∩FG = FG(p) so that |CG

v (p)| = |CFG
v (p)| (if they are both infinite,

they are not necessarily equal as FG is only the connected component of the root). We now
observe that the vertices and edges found by Prim’s algorithm starting from o in G are all in
FG.

From this observation, the left implication directly follows, since there is no infinite com-
ponent for Prim’s algorithm to encounter. For the converse implication, assume that FG has
infinite components at level p and let F∞ be their union. We now show that Prim’s algorithm
eventually reaches F∞.

If o ∈ F∞, then it is trivially true, so we now assume that o /∈ F∞. Let o = v0, . . . , vk be a
shortest path from o to F∞ and let e = {vi, vi+1} be the edge of maximal weight in this path.
Since we know that o /∈ F∞ and e is the edge of maximal weight, it follows that w(e) > p.
But then, in that case CG

vi+1
(w(e)) contains the infinite component at level p included in F∞,

so it is infinite. By the definition of the minimum spanning forest from Section 2.1, this
implies that |CG

vi(w(e))| = |CG
o (w(e))| < ∞, and so Prim’s algorithm eventually visits the edge

e. Using this argument inductively, we see that Prim’s algorithm eventually reaches F∞, as
desired. □

We now use K(p) to characterise the expanded invasion percolation cluster, and highlight
its relation to the invasion percolation cluster (IPC) and Prim’s algorithm:

Lemma 2.2 (Decomposition of expanded IPC). Let G be a rooted weighted graph, FG its
rooted weighted minimum spanning forest, and FG

+(p) its expanded invasion percolation cluster

as defined in Section 2.2. Further define K(p) = KG(p) as in (3) and v(p) = vG(p) as the
(K(p) + 1)-th vertex explored in Prim’s algorithm. Then, for any p ∈ [0, 1],

FG
+(p) = PK(p)+1(G) ∪

(
FG ∩ CG

v(p)(p)
)
,

where, when K(p) = ∞, this formula equals

FG
+(p) = P∞(G).

Proof. Consider first the case K(p) = ∞. We already know from its definition in Section 2.2
that P∞(G) is a subtree of FG

+(p). For the other inclusion, let e = {u, v} be an edge on the

boundary of P∞(G) in FG, so that u is explored by Prim’s algorithm, while v is not. Using the
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definition of Prim’s algorithm, we observe that CG\{e}
u (w(e)) contains an infinite component

of P∞(G) and so is infinite. Using the result from Proposition 2.1, we see that this implies
that w(e) > p and so e /∈ E(F+(p)) as desired.

Next, consider the case where K(p) < ∞. The left inclusion once again directly follows
from the definition of FG

+(p), so we focus on the right inclusion. First of all, since Prim’s

algorithm reaches the component CG
v(p)(p) after K(p) + 1 steps and this component is infinite,

it remains within it for the rest of the time. Using that Prim’s algorithm is a subtree of the
minimum spanning forest, we see that

P∞(G) ⊆ PK(p)+1(G) ∪
(

FG ∪ CG
v(p)(p)

)
.

Write T for the tree on the right-hand side of the previous equation (i.e., the target object
from the lemma) and consider an edge e = {u, v} from FG such that u is in T and v is not.
Then either u ∈ CG

v(p)(p) and since v does not belong to T , it follows that w(e) > p so e does

not belong to FG
+(p). Otherwise, u /∈ CG

v(p)(p) and so K(p) ≥ 1. In that case, there is an edge

between o and CG
v(p)(p) in FG whose weight is larger than p. But then, the edge e has to be

heavier than p, otherwise it would have been incorporated in Prim’s algorithm. In both cases,
we observe that w(e) > p and so e does not belong to FG

+(p), proving the second inclusion. □

2.4. Local limits. For any r ≥ 0 and any rooted graph (G, o), the ball of radius r of (G, o)
denoted Br(G, o) is the rooted subgraph of G composed of all vertices that can be reach
from o using only r edges; for example, B0(G, o) = (({o},∅), o) and B1(G, o) is defined by
V (B1(G, o)) = {o} ∪N , where N is the set of neighbours of o in G, and

E
(
B1(G, o)

)
=

{
{o, v} : v ∈ N

}
∪
(
E(G) ∩

(
N

2

))
.

For a rooted weighted graph G = (G, o,w), we extend the notations and denote Br(G) =
(Br(G, o), w) for the rooted weighted subgraph of G composed of vertices at distance r from
o.

Two graphs G and G′ are said to be isomorphic if there exists a bijection φ : V (G) → V (G′)
such that e = {u, v} ∈ E(G) if and only if φ(e) = {φ(u), φ(v)} ∈ E(G′). Two rooted graphs
(G, o) and (G′, o′) are said to be isomorphic if G and G′ are isomorphic and the previous
bijection φ can be chosen to satisfy φ(o) = o′. Finally, while this definition could directly
be extended to rooted weighted graphs, since the weights considered here are continuous, we
prefer using an approximation, further explained below.

Consider two rooted weighted graphs G = (G, o,w) and G′ = (G′, o′, w′). Then, φ is said to
be a ε-isomorphism between G and G′ if φ satisfies the previous isomorphic condition between
(G, o) and (G′, o′) and ∣∣w(e) − w′(φ(e))

∣∣ ≤ ε

for any e ∈ E(G). We then write G ≡r G′ if there exists a 1/r-isomorphism between Br(G) and
Br(G′). If that is the case, this means that the unweighted versions of G and G′ are isomorphic
on a ball of radius r and that such isomorphism can be chosen so that edges are mapped to
edges with weights that are at most 1/r apart. We also naturally extend this notation to
unweighted graphs by saying that (G, o) ≡r (G′, o′) if and only if (G, o,1) ≡r (G′, o′,1), where
1 is the constant function equal to 1.
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For two rooted weighted graphs G and G′, define their distance to be 1/(r + 1), where r is
the maximal radius on which they are equivalent, that is

d(G,G′) =
(

1 + sup
{
r ≥ 0 : G ≡r G′

})−1
.(4)

Then, the metric space of rooted weighted graphs (up to isomorphisms), endowed with the
distance d, is a Polish space. Indeed, both the space of rooted graphs endowed with d (by
giving constant weights equal to 1) and [0, 1] endowed with the distance in absolute value
are Polish, and so it is not difficult to verify that the space of rooted weighted graphs is
Polish. Thus, we can consider convergence, random variables, and random processes on it. In
particular, this allows us to define the standard local weak topology, as introduced in [12], as
follows.

A sequence of (random) weighted graphs (Gn)n≥1 converges locally weakly to the rooted
weighted graph G if, for any bounded continuous function h with respect to d,

E
[
h(Gn, on)

]
−→ E[h(G)] ,

where on is a vertex from V (Gn) chosen uniformly at random. When that is the case, we

denote it by Gn
lwc−→ G. We further extend this notation to allow the convergence to occur not

only in expectation, but also in probability, i.e., for random graphs Gn,

E
[
h(Gn, on) | Gn

] P−→ E[h(G)],

where now the expectation is with respect to the random root only (i.e., now with respect to
the randomness of the graph). When that is the case, we say that (Gn)n≥1 converges locally

in probability towards G and denote it by Gn
lcP−→ G. Similarly, we extend these two notations

to rooted weighted graphs (that is, Gn
lwc−→ G and Gn

lcP−→ G), where it is always the case
that the root is chosen uniformly at random among the vertex set of Gn. We also later apply
a function on Gn (namely, Prim’s algorithm) but the root is always chosen in advance, and
uniformly in V (Gn). Finally, when considering unweighted graphs, we simply add constant
edge weights equal to 1, and use the same notations and terminology. Interestingly, the two
notions of weighted and unweighted local weak convergence are strongly related, as specified
by the following lemma:

Lemma 2.3 (Local convergence of random graphs with i.i.d. weights). Let (Gn)n≥1 be a
sequence of graphs and (G, o) a rooted graph. Further endow these graphs with independent
and identically distributed edge weights to obtain (Gn)n≥1 = (Gn, wn)n≥1 and G = (G, o,w),
where the weights have the same distributions. Then weighted and unweighted local weak
convergence are equivalent, that is

Gn
lwc−→ (G, o) ⇐⇒ Gn

lwc−→ G .

Proof. We give a direct proof, but this can also be proved using a coupling argument instead.
Fix r ≥ 0 and a rooted weighted graph H = (H, ρ, ξ). Further write W for a random variable
distributed according to the common weight distribution. Then, given the random graph
G = (G, o,w) and using the definition of ≡r, the event {G ≡r H} can be split according to
the existence of the isomorphism and the weights on this isomorphism being close to each
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other:

P
(
G ≡r H

)
= P

(
G ≡r H

∣∣∣ (G, o) ≡r (H, ρ)
)
P
(

(G, o) ≡r (H, ρ)
)

=

 ∏
e∈E(Br(H))

P
(∣∣W − ξ(e)

∣∣ ≤ 1

r

)P
(

(G, o) ≡r (H, ρ)
)
.

Denote the product of probabilities in the last equation by P (H). The same argument as
before can then be applied to (Gn, v) for any n ≥ 1 and v ∈ V (Gn), leading to

1

|Gn|
∑

v∈V (Gn)

P
(

(Gn, v) ≡r H
)
− P

(
G ≡r H

)

= P (H) ·

 1

|Gn|
∑

v∈V (Gn)

P
(

(Gn, v) ≡r (H, ρ)
)
− P

(
(G, o) ≡r (H, ρ)

) .

To conclude this proof, use [36, Theorem 2.16] to restrict our study to H such that P (H) > 0,
thus proving that the left-hand side converges to 0 if and only if the right-hand side does as
well. It now suffices to notice that the left-, respectively, right-hand sides converge to 0 for all
such H if and only if the weighted, respectively unweighted, graph sequence converges, which
is exactly the desired statement. □

2.5. Properties of the local limit. In this section we explore some of the known properties
regarding the local limits of graph sequences. As a first step, and because it is an essential
part of our work, we provide the following theorem stating that the local limit of the minimum
spanning tree is the minimum spanning forest:

Theorem 2.4 ([6, Theorem 5.4]). Let (Gn)n≥1 be a sequence of weighted graphs which con-
verges locally weakly towards G. Then, under the standard product topology,(

Gn,T
Gn
) lwc−→

(
G,FG) .

It is easy to see that, when Gn is the standard extension of Gn, the previous result implies
that the paired rooted weighted convergence also occurs, i.e.,(

Gn,TGn
) lwc−→

(
G,FG) .

Furthermore, using a similar argument as that of the original proof, the previous convergence
of measures can be extended, thanks to Skorohod’s representation theorem, to an almost-
sure convergence on an appropriate probability space. Under this coupling, for any r ≥ 1,
there exists n0 such that, for n ≥ n0, we have Gn ≡r G and TGn ≡r FG. Naturally, this
can be extended to r = rn growing slowly enough. We say that a sequence of functions
k = (kn(·))n≥1 is a linearly growing sequence with respect to (Gn)n≥1 (or equivalently with
respect to (Gn)n≥1) if, for any t ∈ [0, 1], we have limn→∞ kn(t)/n = t, and further (kn(0))n≥1

is a slowly growing radius diverging to infinity such that there exists a coupling satisfying

P
(
Gm ≡kn(0) G and FGm ≡kn(0) F

G
)

= 1(5)

for all m ≥ n. In other words, this definition means that kn(t) = nt + o(n) where the o(n)
term when t = 0 is diverging at a rate allowing us to couple (Gn,TGn) with (G,FG).

After having stated the fundamental result regarding the convergence of the minimum
spanning tree, and having defined linearly growing sequences, we now complete this section
with applications of Assumption 3. The first result states that the largest component of
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the finite sequence of graphs asymptotically covers the same proportion of vertices as the
probability for the graph to be infinite in the limit:

Proposition 2.5 ([36, Theorem 2.28]). Let (Gn)n≥1 be locally converging in probability to
(G, o). Let (Gn)n≥1 and G be the respective standard expansions of (Gn)n≥1 and (G, o), and
define θ as in (1). Then, if (Gn)n≥1 satisfies Assumption 3, for any p ∈ [0, 1],∣∣CGn

(1) (p)
∣∣

n

P−→ θ(p) and

∣∣CGn

(2) (p)
∣∣

n

P−→ 0 .

In fact, if Assumption 3 holds for some p ∈ [0, 1], then also Proposition 2.5 holds for that p.

This provides a first characterisation of the sizes of components in the finite graphs. It is
interesting to note that the fact that the second largest component has a size of a smaller
order than n also means that this is true for every subsequent component. We now provide a
more local characteristic of the largest and other components:

Proposition 2.6 ([36, Theorem 2.32]). Let (Gn)n≥1 be locally converging in probability to
(G, o). Let (Gn)n≥1 and G be the respective standard expansions of (Gn)n≥1 and (G, o), and
define θ as in (1). Then, if (Gn)n≥1 satisfies Assumption 3, for any p ∈ [0, 1],

CGn

(1) (p)
lcP−→ CG

o (p)
∣∣∣ ∣∣CG

o (p)
∣∣ = ∞ and

⋃
k≥2

CGn

(k)(p)
lcP−→ CG

o (p)
∣∣∣ ∣∣CG

o (p)
∣∣ < ∞ .

This second proposition is very useful as it states that we can approximately know whether
the root belongs to the largest component or not simply from observing the neighbourhood
of a node. This is a key point in the proof of Proposition 2.7 below, stating that the only
large component in a neighbourhood is the largest component:

Proposition 2.7. Let (Gn)n≥1 be locally converging in probability to (G, o). Let (Gn)n≥1 and
G be the respective standard expansions of (Gn)n≥1 and (G, o). Then, if (Gn)n≥1 satisfies
Assumption 3, for any p ∈ [0, 1] and r ≥ 0,

lim
k→∞

lim sup
n→∞

P
(
∃v ∈ Br(Gn) \ CGn

(1) (p) : |CGn
v (p)| ≥ k

)
= 0 .

In other words, for any ε > 0, there exists k0 and n0 = n0(k0) such that, for all k ≥ k0 and
n ≥ n0,

P
(
∃v ∈ Br(Gn) \ CGn

(1) (p) : |CGn
v (p)| ≥ k

)
≤ ε .

Proof. Fix ε > 0. First observe that, for M > 0 large enough and for all n ≥ 1,

P
(∣∣B2r(Gn)

∣∣ > M
)
≤ ε .

It follows that

P
(
∃v ∈ Br(Gn) \ CGn

(1) (p) : |CGn
v (p)| ≥ k

)
≤ ε + P

(
∃v ∈ Br(Gn) \ CGn

(1) (p) : |CGn
v (p)| ≥ k,

∣∣B2r(Gn)
∣∣ ≤ M

)
≤ ε + P

(
∃v ∈ Br(Gn) : v ∈

⋃
i≥2

CGn

(i) (p), |CGn
v (p)| ≥ k,

∣∣Br(Gn, v)
∣∣ ≤ M

)
,

where we have used that if the ball of radius 2r has size at most M , then so does any ball
of radius r of a vertex at distance at most r from the original root. Furthermore, using that
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v ∈ Br(Gn) = Br(Gn, on, wn) if and only if on ∈ Br(Gn, v), and by summing over all possible
v ∈ V (Gn), the previous bound becomes

P
(
∃v ∈ Br(Gn) \ CGn

(1) (p) : |CGn
v (p)| ≥ k

)
≤ ε +

∑
v∈V (Gn)

P
(
on ∈ Br(Gn, v), v ∈

⋃
i≥2

CGn

(i) (p), |CGn
v (p)| ≥ k,

∣∣Br(Gn, v)
∣∣ ≤ M

)
.

Observe that only the first event of the probability depends explicitly on on. Thus, using that
on is uniform over the set of vertices, it follows that

P
(
∃v ∈ Br(Gn) \ CGn

(1) (p) : |CGn
v (p)| ≥ k

)
≤ ε +

∑
v∈V (Gn)

E
[
|Br(Gn, v)|
|V (Gn)|

· 1{
v∈

⋃
i≥2 C

Gn
(i)

(p),|CGn
v (p)|≥k,|Br(Gn,v)|≤M

}]

≤ ε +
M

|V (Gn)|
∑

v∈V (Gn)

P
(
v ∈

⋃
i≥2

CGn

(i) (p), |CGn
v (p)| ≥ k

)
.

To conclude the proof, we simply note that Proposition 2.6 tells us that

lim
n→∞

1

|V (Gn)|
∑

v∈V (Gn)

P
(
v ∈

⋃
i≥2

CGn

(i) (p), |CGn
v (p)| ≥ k

)
= P

(
|CG

o (p)| ≥ k
∣∣∣ |CG

o (p)| < ∞
)
,

and the right-hand side converges to 0 as k → ∞. This proves the desired convergence. □

2.6. Process convergence. We conclude Section 2 with a short background on process
convergence for sequences of stochastic processes as used in Theorem 1.1. The main strategy is
to use the standard Skorohod topology (also called Skorohod J1 topology) to allow for processes
on Polish spaces (like the space of rooted weighted graphs) to be defined. We hereafter simplify
the process convergence to three conditions and refer to [16, Chapter 3] for more details on
this topology.

Let (Gn(t))n≥1,t∈[0,1] be a sequence of cadlag processes on the space of rooted weighted
graphs and recall the definition of d from (4). Then we say that it converges towards the

cadlag process G = (G(t))t∈[0,1], and write it (Gn(t))t∈[0,1]
lpc−→ (G(t))t∈[0,1] if and only if it

satisfies the following three conditions.

▷ The multi-dimensional process converges: for all integer r ≥ 1, sets of time t1, . . . , tk,
and rooted weighted graphs H1, . . . ,Hk, we have

lim
n→∞

P
(
Gn(t1) ≡r H1, . . . ,Gn(tk) ≡r Hk

)
= P

(
G(t1) ≡r H1, . . . ,G(tk) ≡r Hk

)
.(6)

▷ The limiting process is continuous at 1: for all ε > 0, we have

lim
δ→0

P
(
d
(
G(1),G(1 − δ)

)
≥ ε

)
= 0(7)

▷ The sequence does not have high increments: for all ε > 0, there exists δn ∈ (0, 1)
such that

lim
n→∞

P
(
∃t < t′ < t′′ < t + δn : d

(
Gn(t), Gn(t′)

)
≥ ε and d

(
Gn(t′), Gn(t′′)

)
≥ ε

)
= 0 .(8)

This definition for the local process convergence arises from [16, Theorem 13.3] and the latter
two conditions (7) and (8) can be understood as the graph process being tight. We refer to
the extensive discussion of dynamic local convergence in [47].
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It is worth noting that while this notion of convergence can be seen as very generic, the
structure of Gn(t) is specific in our case. Indeed, it is always of the form ft(Gn, on, wn) where
(Gn)n≥1 is a generic sequence of graphs, on is a uniformly chosen vertex, wn are independent
Uniform([0, 1]) edge weights, and ft is a function mapping rooted weighted graphs unto
rooted trees (more precisely, Prim’s algorithm applied a partial number of steps).

3. Convergence of Prim’s algorithm

The goal of this section is to prove Theorem 1.1. Let us start by recalling some notations
that we use throughout this section.

For the rest of the section, we assume that (Gn)n≥1 converges locally in probability towards
(G, o) and we let (Gn)n≥1 and G be the respective standard expansions of (Gn)n≥1 and
(G, o). Using Skorohod’s representation theorem, we assume without loss of generality that
(Gn,TGn) converges almost-surely towards (G,FG) and we let k = (kn(·))n≥1 be a linearly
growing sequence satisfying (5). We let θ = θG, θ−1, and K = KG be defined as in (1), (2),
and (3) respectively. Finally, assume that G satisfies Assumption 1 and (Gn)n≥1 satisfies
Assumption 3 (Assumption 2 is not necessary for the first results).

The rest of the section is organised as follows. In Section 3.1, we cover a special convergence
result for Prim’s algorithm which we then use in Section 3.2 to first prove the necessary one-
dimensional convergence for Theorem 1.1. In turn, we then extend one-dimensional to multi-
dimensional convergence as in (6). Finally, we conclude with the proof that Prim’s algorithm
and its limit satisfy the two conditions (7) and (8), thus proving convergence as a process.

3.1. Prim’s algorithm with an appropriate number of steps. In this section, we pro-
vide a special case for the convergence of Prim’s algorithm towards the expanded invasion
percolation cluster, which is the first key step in the proof of Theorem 1.1. We state this
result as follows:

Proposition 3.1. Let Assumptions 1 and 3 hold. Using the notations from the beginning of
Section 3, for any r ≥ 1 and p such that θ(p) > 0,

lim
n→∞

P
(
PK(p)+

∣∣∣CGn
(1)

(p)
∣∣∣(Gn) ≡r FG

+(p)
)

= 1 .

Proof. Fix r ≥ 1, ε > 0 and p satisfying θ(p) > 0. Recall that kn = kn(0) diverges and that
Gn ≡kn G and TGn ≡kn FG almost-surely. Using that θ(p) > 0 along with Assumption 1 and
Proposition 2.1, K(p) is finite so there exists n0 such that, for all n ≥ n0,

P
(
K(p) > kn

)
≤ ε

3
.

Moreover, by applying Proposition 2.7 with r = kn0 , we know that there exists n1 and k0
such that, for all n ≥ n1 and k ≥ k0,

P
(
∃v ∈ Bkn0

(Gn) \ CGn

(1) (p) : |CGn
v (p)| ≥ k

)
≤ ε

3
.

Further, set n2 such that, for all n ≥ n2, we have kn ≥ kn0 + k0. Finally, using that G is
locally finite, define n3 such that, for all n ≥ n3,

P
(

inf
{
|w1 − w2| : w1 ̸= w2 ∈ {p} ∪

{
w(e) : e ∈ E

(
Bkn2

(G)
)}}

≤ 1

2kn

)
≤ ε

3
.

In words, the distance between all edge weights in Bkn2
(G) as well as the distance between

these edge weights and p is at least 1/2kn3 .
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For all n, we write En for the union of all the bad events considered previously, that is
K(p) > kn0 , Bkn0

(Gn) has a component of size at least k0 which is not its largest com-

ponent, and the weights of the edges of Bkn2
(G) are at a distance less than 1/(2kn3) from

each other and from p. The previous definitions of n0, n1, n2, n3 imply that, for any n ≥
max{n0, n1, n2, n3}, P(En) ≤ ε. We now show that, on the event Ec

n, the event stated in the
proposition holds.

We recall that v(p) = vG(p) was defined in Section 2.3 as the first vertex in an infinite
component explored by Prim’s algorithm on G. In particular, on the event Ec

n, we have that
K(p) ≤ kn0 < ∞ and so |CG

v(p)(p)| = ∞. Furthermore, if K(p) ≤ kn0 and since kn2 ≥ kn0 +k0 ≥
k0 + K(p), we see that CG

v(p)(p) intersects Bkn2
(G, o) in at least k0 vertices.

On the event Ec
n, and since the edge weights of Gn and G are at a distance at most 1/(2kn),

we observe that the ordering of the edges on the ball of radius kn2 is the same between Gn

and G. In particular, as long as Prim’s algorithm does not leave the ball of radius kn2 , it
explores the same vertices and in the same order in Gn and in G. Using that, on the event
Ec

n, K(p) ≤ kn0 , it follows that Prim’s algorithm behaves in the same way on Gn and on G,
at least until it reaches v(p). However, then, since CG

v(p)(p) intersects Bkn2
(G) on at least k0

vertices and since no weight in G larger than p would be smaller than p in Gn, it follows that
|CGn

v(p)(p)| ≥ k0 and, by using that we are on Ec
n again, it follows that CGn

v(p)(p) = CGn

(1) (p).

Consider now the tree T = PK(p)+
∣∣∣CGn

(1)
(p)

∣∣∣(Gn). We aim to prove that, on Ec
n,

T ≡r FG
+(p) .

For all n such that r ≤ kn, since the weights on both balls are at least 1/2kn away from each
other thanks to the coupling between G and Gn, it only suffices to check that the two graphs
are isomorphic to each other until depth r. To do so, we first observe that, since Prim’s
algorithm reaches CGn

(1) (p) after K(p) + 1 steps, it follows that

T = PK(p)+1(Gn) ∪ T
(CGn

(1)
(p),wn) ,

where we recall that wn = (wn(e))e∈E(Gn) are the edge weights on Gn, and we note that T
is the first part of Prim’s algorithm combined with the minimum spanning tree on its largest
component at level p. Using that

T
(CGn

(1)
(p),wn) = TGn ∩ CGn

(1) (p),

along with the properties of the coupling, it follows that

T ≡r PK(p)+1(G) ∪
(

FG ∩ CG
v(p)(p)

)
,

as long as kn ≥ r and we are on Ec
n. However, this last term is exactly the target structure

thanks to Lemma 2.2. Thus, we have proved that the desired equivalence is true, which occurs
with probability at least 1 − ε for n large enough. This is exactly the desired convergence
statement. □

3.2. Marginal convergence. In this section, we use Proposition 3.1 to show that the multi-
dimensional distributions converge as stated in Theorem 1.1. We start with the one-dimensional
distribution:
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Proposition 3.2 (One-dimensional convergence). Let Assumptions 1 and 3 hold. Further,
assume that θ satisfies Assumption 2. Using the notations from the beginning of Section 3,
for any r ≥ 1 and t ∈ [0, 1],

lim
n→∞

P
(
Pkn(t)(Gn) ≡r FG

+

(
θ−1(t)

))
= 1 .

Proof. Fix ε > 0, r ≥ 1 and t ∈ [0, 1]. Let δ > 0 be such that

P
(

inf
{
|θ−1(t) − w(e)| : e ∈ E

(
Br(G)

)}
≤ δ

)
≤ ε

5
.(9)

We start with the case t = 0.
When t = 0, using the fact that Gn ≡kn(0) G, it follows that

Pkn(0)(Gn) ≡kn(0) Pkn(0)(G) .

Then, since kn(0) → ∞, it also follows that

lim
n→∞

P
(
Pkn(0)(G) ≡r P∞(G)

)
= 1 .

It only remains to use that P∞(G) = FG
+(0), as stated in Lemma 2.2, to see that the desired

result holds when t = 0.
Assume now that t ∈ (0, 1). Thanks to Assumption 2 and the definition from (2), θ−1

is continuous and strictly increasing from [0, 1) to [pc, 1), with θ−1(0) = pc, and we recall
that θ−1(1) = 1. Thus, we can find p− ≤ θ−1(t) ≤ p+ such that θ(p−) < t < θ(p+) and
|p+ − θ−1(t)|, |p− − θ−1(t)| ≤ δ. As a first step, we observe that θ(p+) > t > 0, and therefore
we can apply Proposition 3.1 to find n+ such that, for all n ≥ n+,

P
(
PK(p+)+

∣∣∣CGn
(1)

(p+)
∣∣∣(Gn) ≡r FG

+(p+)
)
≥ 1 − ε

5
.

Moreover, using that |p+ − θ−1(p)| ≤ δ along with (9), the error in probability arising from
replacing p+ with θ−1(p) in FG

+ is ε/5, leading to

P
(
PK(p+)+

∣∣∣CGn
(1)

(p+)
∣∣∣(Gn) ≡r FG

+

(
θ−1(p)

))
≥ 1 − 2ε

5
.

We next note that there are two possibilities: We either have that θ(p−) > 0, in which case
we can apply the same method and obtain that, for all n ≥ n−,

P
(
PK(p−)+

∣∣∣CGn
(1)

(p−)
∣∣∣(Gn) ≡r FG

+

(
θ−1(p)

))
≥ 1 − 2ε

5
.

Alternatively, θ(p−) = 0, and, in that case, we use the definition of kn to see that

P
(
Pkn(0)(Gn) ≡r P∞(G)

)
= 1 ≥ 1 − ε

5
.

Moreover, using Assumption 1 and Proposition 2.1, we see that θ(p−) = 0 implies that
P(K(p−) = ∞), which, combined with Lemma 2.2, means that P∞(G) = FG

+(p−) almost-
surely. Again using the definition of δ and p−, it follows that

P
(
Pkn(0)(Gn) ≡r FG

+

(
θ−1(p)

))
≥ 1 − 2ε

5
.

Combing the previous results, we have proved that

P
(
PLn(Gn) ≡r FG

+

(
θ−1(p)

)
≡r PUn(Gn)

)
≥ 1 − 4ε

5
,
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where

Un = K(p+) +
∣∣∣CGn

(1) (p+)
∣∣∣ ,

and

Ln =

{
K(p−) +

∣∣∣CGn

(1) (p−)
∣∣∣ if θ(p−) > 0,

kn(0) otherwise .

It remains to prove that, with high probability,

(10) Ln ≤ kn(t) ≤ Un.

To show that the bounds in (10) hold, use Proposition 2.5, as well as the fact that K is
almost-surely finite when θ is positive by Assumption 1 and Proposition 2.1, to obtain that

Un

n

P−→ θ(p+) > t,

and

Ln

n

P−→
{

θ(p−) < t if θ(p−) > 0,
0 otherwise.

Recalling that kn(t)/n → t > 0, there exists n0 ≥ max{n+, n−} such that, for all n ≥ n0,

P
(
Ln ≤ kn(t) ≤ Un

)
≥ 1 − ε

5
.

Thus, for any n ≥ n0, and kn ≥ r,

P
(
Pkn(t)(Gn) ≡r FG

+

(
θ−1(t)

))
≥ 1 − ε ,

where we have used that Prim’s algorithm is a monotone process. This is exactly the desired
result when t ∈ (0, 1). Thus, it only remains to cover the case t = 1. However, this case uses
the exact same proof as that of the case 0 < t < 1, except that the coupling directly gives us
that

TGn = Pn(Gn) ≡r FG
+

(
θ−1(1)

)
= FG,

which we use as the upper bound instead of Prim’s algorithm performed Un steps. Since the
lower bound remains true in that case as well, the desired result follows. □

We have proved that the one-dimensional distribution converges with high probability to
the desired limit, and extending this proof to the multi-dimensional distribution directly
follows from the fact that the intersection of finitely many high-probability events is also a
high-probability event:

Corollary 3.3 (Muti-dimensional convergence). Let Assumptions 1 and 3 hold. Further,
assume that θ satisfies Assumption 2. Using the notations from the beginning of Section 3,
for any r ≥ 1 and t, . . . , tk ∈ [0, 1],

lim
n→∞

P
(
∀ℓ ∈ [k] : Pkn(tℓ)(Gn) ≡r FG

+

(
θ−1(tℓ)

))
= 1 .

This concludes the section on marginal convergence, and in the next section, we use these
results to prove that the process convergence occurs as stated in Theorem 1.1.
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3.3. Process convergence. In this section we conclude the first part of this work by provid-
ing the proof of Theorem 1.1. To do so, we simply verify that the three assumptions (6), (7),
and (8) from Section 2.6 are satisfied.

Proof of Theorem 1.1. Observe first that the convergence corresponding to (6) directly follows
from the definition of the coupling at the beginning of Section 3 along with Corollary 3.3. For
the second condition, we observe that, if all edges in Br(G) have weight less than 1 − δ, then
FG
+(1 − δ) ≡r FG

+(1). Using that G is locally finite, this implies that, for all r ≥ 1,

lim
δ→0

P
(
d
(
FG
+(1 − δ),FG

+(1)
)
>

1

r + 1

)
= 0 ,

and this exactly corresponds to (7). We now prove that the final condition in (8) holds.

Fix r ≥ 1 and ε > 0. Our goal is to show that there exists n0 and δ0 > 0 such that, for all
n ≥ n0 and δ ≤ δ0, we have

P

∃t < t′ < t′′ < t + δ :

 d
(
Pkn(t)(Gn),Pkn(t′)(Gn)

)
> 1

r+1

d
(
Pkn(t′)(Gn),Pkn(t′′)(Gn)

)
> 1

r+1

 ≤ ε .

Using first that θ−1 is continuous and strictly monotone from [0, 1] to [pc, 1], as implied by
Assumption 2, we observe that

∆(θ, δ) = sup
{∣∣θ−1(t + δ) − θ−1(t)

∣∣ : t ∈ [0, 1 − δ]
}

is decreasing in δ, strictly positive whenever δ > 0, and converges to 0 as δ → 0. Combining
this with the fact that G is locally finite, we can set δ0 so that

P
(

min
{∣∣w(e) − w(e′)

∣∣ : e ̸= e ∈ E
(
Br(G)

)}
≤ ∆(θ, 3δ0)

)
≤ ε

2
.

We observe that the complement of the previous event implies that no segment of length less
than ∆(θ, 2δ0) contains two edge weights. From this observation, the previous definition of
δ0 implies that

P
(
∃t,∃e ̸= e′ ∈ E

(
Br(G)

)
: θ−1(t) ≤ w(e), w(e′) ≤ θ−1(t + 2δ0)

)
≤ ε

2
.

Consider now a sequence of closed intervals ([t−ℓ , t
+
ℓ ])1≤ℓ≤k of length 2δ0 such that any interval

of length δ0 is fully included into one of these intervals. One can for example choose t−ℓ =

(ℓ− 1)δ0 with t+ℓ = t−ℓ + 2δ0 for ℓ ≤ 1/δ− 1 and add the extra interval [1− 2δ0, 1] at the end.
Using Corollary 3.3, we can find n0 such that, for all n ≥ n0,

P
(
∀ℓ ∈ [k] : Pkn(t

±
ℓ )(Gn) ≡r FG

+

(
θ−1(t±ℓ )

))
≥ 1 − ε

2
.

We conclude this proof by showing that δ0 and n0 satisfy the desired property. We assume
without loss of generality that n0 is large enough so that Gn ≡r G for all n ≥ n0.

Consider n ≥ n0 and δ ≤ δ0. Consider three times t < t′ < t′′ < t + δ. Then t, t′, t′′ are all
contained in an interval of length δ0 and so they all belong to one of the interval [t−ℓ , t

+
ℓ ] for

some ℓ. However, now, if we assume that Pkn(t
±
ℓ )(Gn) = FG

+(θ−1(t±ℓ )) and that there exists no

pair of edges whose difference of weights is less than ∆(θ, 2δ0), the existing coupling between
Gn and G as well as the monotony of Prim’s algorithm implies that, for all t̃ ∈ {t, t′, t′′},

Pkn(t̃)
(Gn) ≡r FG

+(t−ℓ ),
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or

Pkn(t̃)
(Gn) ≡r FG

+(t+ℓ ) .

It follows that

min

{
d
(
Pkn(t)(Gn),Pkn(t′)(Gn)

)
, d
(
Pkn(t′)(Gn),Pkn(t′′)(Gn)

)}
≤ 1

r + 1
,

and thus

P

∃t < t′ < t′′ < t + δ :

 d
(
Pkn(t)(Gn),Pkn(t′)(Gn)

)
> 1

r+1

d
(
Pkn(t′)(Gn),Pkn(t′′)(Gn)

)
> 1

r+1


≤ P

(
∃ℓ ∈ [k] : Pkn(t

±
ℓ )(Gn) ̸≡r FG

+

(
θ−1(t±ℓ )

))
+ P

(
∃t,∃e ̸= e′ ∈ E

(
Br(G)

)
: θ−1(t) ≤ w(e), w(e′) ≤ θ−1(t + 2δ0)

)
≤ ε ,

as desired. This proves that the third condition in (8), as stated in Section 2.6, is satisfied
and thus concludes the proof of Theorem 1.1. □

4. Examples and counter-examples

In Section 4.1, we first show that Theorem 1.1 applies to four common graph sequences
and limits: the multi-dimensional grid, the Erdős-Rényi graph, the configuration model, and
the preferential attachment graph. In Section 4.2, we then provide two interesting examples
of graphs satisfying exactly one of Assumption 1 and Assumption 3 and state the conjecture
that Assumption 1 is not strictly necessary.

4.1. Example graph sequences. In this section, we discuss important examples of graph
sequences to which our results apply.

Grids. The minimal spanning tree on grids is closely related to percolation on Zd, which is
a topic of intense research. See [32] for overviews of the field, and [34] for an overview of
percolation in high dimensions. Assumptions 1, 2 and 3 are all well known. In particular,
Assumption 1 holds since the infinite component is unique (see [32, Theorem 8.1]), so that
the minimal spanning forest (and even Prim’s algorithm) needs to enter it at some point (and
then in fact will never leave it). Assumption 2 is [32, Theorem 8.8]. Finally, Assumption 3

follows from the fact that |CGn

(1) (p)|/|V (Gn)| P−→ θ(p), while |CGn

(2) (p)|/|V (Gn)| P−→ 0 (see e.g.,

[38]), and the fact that this is equivalent to Assumption 3 by [35]. Thus, our results apply to
this important case.

Complete graph. Percolation on the complete graph is the Erdős-Rényi random graph,
and the connections between the minimal spanning tree and the critical Erdős-Rényi random
graph are tight [2]. Our results apply, see also below for the discussion on the configuration
model. The setting is slightly different though, as we now need to take p = λ/n, and consider
λ as the parameter instead of p ∈ [0, 1].

Configuration model. Assumption 1 is true as the local limit is a unimodular branching-
process tree. Assumption 3 is true by [36, Section 4.3.1], while continuity of θ, which implies
Assumption 2, follows from [46]. The above references can easily be extended to the Erdős-
Rényi random graph.
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Preferential attachment models. Again our results apply. Assumption 1 is true by [33],
which also proves the continuity of p 7→ θ(p) in Assumption 2. Assumption 3 again holds

since |CGn

(1) (p)|/|V (Gn)| P−→ θ(p), while |CGn

(2) (p)|/|V (Gn)| P−→ 0 by [33], and the fact that this is

equivalent to Assumption 3 by [35].

We conclude that there is a wide range of models to which our results apply, and where
the dynamic local limit of Prim’s algorithm gives insight into how the minimal spanning tree
is formed.

4.2. A discussion on the assumptions. In this section, we provide some examples of graph
sequences which do not satisfy at least one of the assumptions and study the behaviour of
Prim’s algorithm in these cases.

Union graphs. For the rest of the section, we let (G1
n)n≥1 and (G2

n)n≥1 be two sequences
of graphs locally converging to G1 and G2, with percolation functions θ1 and θ2 and both
satisfying all the assumptions from Theorem 1.1. One can for example consider (G1

n)n≥1 and
(G2

n)n≥1 to be sequences of random d1- and d2-regular graphs. We further assume that both
G1

n and G2
n have size n and let (Gn)n≥1 be the graph obtained by taking the union of G1

⌊n/2⌋
and G2

⌈n/2⌉, so that Gn also has size n. We call such graphs union graphs. They are of interest

since they are the simplest examples where we do have local convergence, but our assumptions
may be false. It may be convenient to assume that the two graphs are connected by adding
an arbitrary edge between the two components (or even an arbitrary, but finite, number of
edges), and we note that this does not affect the local limit.

Before observing the effect of this construction on the different assumptions, we first observe
that the local limit of (Gn)n≥1 is the graph G which is distributed as G1 with probability 1/2,
and as G2 otherwise. This implies that θ = θG = (θ1 + θ2)/2.

Satisfying the assumptions for union graphs. To start this section, we observe in which
cases (Gn)n≥1 and its limit satisfy the different assumptions.

If we denote by p1c and p2c the critical percolation for G1 and G2, we observe that As-
sumption 1 is satisfied if and only if p1c = p2c . Indeed, by conditioning the probability from
Assumption 1 according to whether G is distributed as G1 or G2, we observe that

P
(
∃v ∈ V (FG) :

∣∣CG
v (p)

∣∣ = ∞
)

=
1

2

(
1{θ1(p)>0} + 1{θ2(p)>0}

)
.

From this formula, and using that θ = (θ1 + θ2)/2, we see that Assumption 1 holds if and
only if θ1 and θ2 become positive at the same time, i.e., if and only if p1c = p2c .

To test whether Assumption 2 holds here, we first observe that, if θ1 and θ2 both satisfy
this assumption, then θ also satisfies it when p1c = p2c . In the case where p1c ̸= p2c , since
pc = min{p1c , p2c}, we see that Assumption 2 is satisfied if and only if the graph with larger
critical value has a continuous percolation function. For example, if we assume that p1c < p2c ,
then we want θ2 to be continuous on the whole interval [0, 1] (or equivalently on (p1c , 1] since
θ2(p) = 0 whenever p < p2c).

Finally, we can see that Assumption 3 does not hold if both θ1(p) and θ2(p) are positive
for some p < 1. Indeed, in that case both G1

⌊n/2⌋ and G1
⌈n/2⌉ have components of linear sizes,
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and using that only one edge connects the two graphs, we see that, for any k ≥ 0,

lim inf
n→∞

1

n2
E
[∣∣∣{u, v ∈ V (Gn) :

∣∣CGn
u (p)

∣∣ ≥ k,
∣∣CGn

v (p)
∣∣ ≥ k, CGn

u (p) ∩ CGn
v (p) = ∅

}∣∣∣]
≥ (1 − p)

θ1(p)θ2(p)

4
.

We further observe that Assumption 3 is still not satisfied when we remove the edge connecting
the two graphs, or add a finite number more of such edges.

Satisfying our theorem for union graphs. In this part, we now evaluate in which case
the sequence of union graphs (Gn)n≥1 satisfies Theorem 1.1. Interestingly, while it does not
always satisfy it in its current form, it actually does by adapting the formula, leading us to
believe that a more general result can be extracted from these observations.

First of all, since the result applies to (Gn)n≥1 when all assumptions are met, we now focus
on the cases where one of the assumptions is not satisfied. We thus assume without loss of
generality that 0 < p1c < p2c < 1. In that case, if the root of Gn lies within the half of the
vertices corresponding to Gi, then, on any ball of finite radius, it seems that Pk(Gn) behaves

similarly to Pk(Gi
⌊n/2⌋), whose local limit is FGi

+ (p) with p satisfying an equation of the form

θi(p) ≃ 2k/n.
The exact behaviour is actually a lot more complicated if there is an edge connecting the

two graphs. Indeed, depending on when the endpoint of this edge is explored, and what the
edge weight is, the exploration of the current graph Gi

m might be suddenly interrupted in order
to explore the other graph. Naturally, this behaviour becomes more and more complicated as
we add more and more edges between the two graphs, while keeping the local limit intact.

For simplicity, we now assume that the two graphs are actually not connected to each
other. Forgetting about the process convergence for now, the previous observations lead, in
that case, to the following convergence:

Pkn(t)(Gn) →

 FG1

+

(
(θ1)−1

(
2t
))

w.p. 1/2

FG2

+

(
(θ2)−1

(
2t
))

w.p. 1/2 ,

meaning that Theorem 1.1 can still hold without all the assumptions being satisfied, by
adapting the statement. Note that a similar formula can be given for more complex union
graphs, where we combine more than two graphs and do not necessarily have equal proportions
of vertices in each graph.

While the previous convergence already has a major caveat in the fact that we might
completely change the previous behaviour by simply adding one edge beween the two graphs,
it still gives the impression that Theorem 1.1 can easily be extended to more complex graph
structures. However, a very similar case as the previous example, but with a distinctly different
behaviour, is the sequence of graphs (Gn)n≥1 where instead of taking the union between two
graphs, we flip a (fair) coin and choose the sequence accordingly. More precisely, (Gn)n≥1 is
exactly (G1

n)n≥1 with probability 1/2, and (G2
n)n≥1 otherwise. Observe that this sequence of

random graphs has the same limit as the union graph: it is G1 with probability 1/2 and G2

otherwise. We emphasize, though, that the behaviour of Prim’s algorithm is quite different,
as the exploration will have to go through the whole graph and thus look more like

Pkn(t)(Gn) →

 FG1

+

(
(θ1)−1(t)

)
w.p. 1/2,

FG2

+

(
(θ2)−1(t)

)
w.p. 1/2 .
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Once again, in this case it is possible to extend Theorem 1.1 without satisfying all the as-
sumptions.

Because of the previous examples, we believe that Theorem 1.1 can be extended past the
assumptions we have made here. However, the complexity of possible behaviours, as well as
the strong dependency on the exact details of the construction sequence of graphs considered,
and not only their local limit, made us prefer its current format. It is still worth noting
that, while it is possible to create much more intricate local behaviour than taking unions of
converging graphs, or choosing sequence of converging graphs at random, these two interesting
cases can actually still be well studied with our main result by simply adapting the limits
accordingly.
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Appendix A. List of symbols and notation

MST Minimum spanning tree
IPC Invasion percolation cluster

w.h.p. With high probability
i.i.d. Independent and identically distributed
Uniform([0, 1]) Standard uniform distribution on [0, 1]

G = (V (G), E(G)) Graph
G = (G,w) Weighted graph
(G, o) Rooted graph with root o
G = (G, o,w) Rooted weighted graph with i.i.d. Uniform([0, 1]) edge weights
G(p) Graph G obtained by only keeping edges of weight less than p
G(p) Rooted weighted graph obtained by only keeping edges of weight less than p

FG = F(G,w) Minimum spanning forest of G
FG = (FG, o) Rooted minimum spanning forest of G
Pk(G) Rooted subtree of G obtained by performing k steps of Prim’s algorithm
FG
+(p) Expanded invasion percolation cluster at level p (see Section 2.2)

θ(p) Percolation survival probability
pc Critical percolation coefficient
CG
o (p) Component of o when only keeping edges with weight less than p

CGn

(1) (p) Largest component when only keeping edges with weight less than p

CGn

(2) (p) Second largest component when only keeping edges with weight less than p
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P−→ Convergence in probability
lwc−→ Local weak convergence (see Section 2.4)
lcP−→ Local convergence in probability (see Section 2.4)
lpc−→ Local process convergence (see Section 2.6)
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