The height

0)

Mallows trees

Selling pitch:

- Mallows trees are random binary search trees.
- Binary search trees are common structures in computer science, related to sorting and accessing data.
- Solution States in the second seco

* Mallows trees would be <u>terrible</u> sorting structures for data...

(W) Right path

(3) Links with Math 447

 Imagine a matrix B: (Bij)ij>,1
 entries: P[Bij:0] = q with Bernoulli(1-9)

 Consider the 1st non-zero entry in the 1st line:
 j, such that B_{ij} = 1 and B_{ij} = 0 for j<j. • With j, defined, consider the 1st non-zero entry in the 2nd line different than j: jz such that Bijz=1 and Bij=0 for j<jz بز≯ز

Repeat ...

A Mallows trees

_:0 .1

With this drawing, imagine that the orange dots appear one after the other, starting from the top.

We create a tree by connecting each new dot to the most recent existing dot,

while not going over green lines.

Exact definition

Mallows tree are a form of random binary search trees.

Binarg search trees are labelled tree with the label of a node being larger (smaller) than the labels of its left (right) subtree.

Mallows trees are obtained by inserting a Mallows permutation in a binary search tree.

 $\rightarrow \mathbb{P}[M_{\text{allows permutation }=0}] \sim q^{\text{Inv}(6)} \sim \frac{1}{2}$

Hope: Rn = heightn

Hope: Mn helps finding Rn

(3) Links with Math 447

Where is the Markov chain?

Scan you find the hidden Geometric and memorylass property is important? why their

Senerating functions are easily computed for what variable?

Are Mellows trees branching processes ?

Where is the coupling and why are we using it ?

Bonvs: Markov's inequality is also widely used with which previous point? Markov's ineq. + Can. for.

Markov chains:

- -> (M.) is a Markor chain.
 - it is not time homogeneous.
 - -, it is transient and converges to an (it is increasing).
- -> (Rn, Mn) is also a Markov chain.
- (R.) is probably not a Markov chain.

Geometric:

- > (Mn.n) is a positive recurrent, time homogeneous MC.
- \rightarrow What is Pij?
 - my IP a spot is empty with probability 1-q, how
 - far is the first non empty one : Geometric (1-9)
 - It follows that :

$$P_{ij} = \begin{cases} P[beometric(1-q) \leq i] & if j = i \\ P[beometric(1-q) = j + i] & o.w. \end{cases}$$

Links with Math 447

$$g(s) = E[s^{R_n}] = TT (1 + (s-1) \frac{1-q}{1-q^k})$$

$$\frac{1-q}{1-q^{k}}$$

We extended to
$$(R_n, M_n)$$
:
 $E[s^{R_n} \cdot t^{M_n}] = \frac{t^n}{s} \cdot TT \cdot \frac{q+(1-q)s-q^k}{1-t-q^k}$ generating
 $F[s^{R_n} \cdot t^{M_n}] = \frac{t^n}{s} \cdot \frac{1+t-q^k}{1-t-q^k} = function$

.

😵 Links with Math 447

Coupling:

- > The interest: connecting two (or more) random variables
- > Mallows trees are given with two parameters:

n ond g

- There is no obvious reasons why they should be

connections between the different parameters.

My Using a single matrix, we can cover all nEN.

Coupling:

Why is this interesting?

my Relation between n-th tree and (n+1)-th tree:

· Proofs by induction.

B Rewrsif Mallows trees generating models.

B Direct extraction of properties : height increases with n.

my Relation between q and g' trees.

OPEN QUESTION: height decreases with q?

Thank you!