

Example of Mallows trees (n, q) :

$q=0.9$

$9: 1$

\star Mallows trees are random binary search trees.

* Binary search trees are common structures in computer science, related to sorting and accessing data.
(1) The height of binary search trees is related to the time/difficulty to access data.
* Mallows trees would be terrible sorting structures for data...

Mallows trees

Right path
Links with Math 倠台7
(78) Mallows trees

- Imagine a matrix $B=\left(B_{i j}\right)_{i j \geqslant 1}$ with Bernoulli $(1-q)$ entries:

$$
\mathbb{P}\left[B_{i j} ; 0\right]=9
$$

- Consider the $1^{\text {st }}$ non-zero entry in the $1^{\text {st }}$ line: j_{1} such that $B_{i j}=1$ and $B_{i j}=0$ for $j<j$.
- With j, defined, consider the $1^{\text {st }}$ nonzero entry in the $2^{\text {nad }}$ line differat than j_{1} :
$j 2$ such that $B_{2 j_{2}}=1$ and $B_{i j}=0 \quad f_{2}, j<j 2$ jj
- Repeat...
(74) Mallows trees
$B=$

$$
\begin{aligned}
& j_{1}=3 \\
& j_{2}=4 \\
& j_{3}=7 \\
& j_{4}=1 \\
& j_{5}=5 \\
& j_{6}=9 \\
& j_{7}=2 \\
& j_{8}=8
\end{aligned}
$$${ }_{0} \square_{1}$

(84) Mallows trees

With this drawing, imagine that the orange dots appear one after the other, starting from the top.

We create a tree by correcting each new dot to the most recut existing dot, while not going over green lines.
(70) Mallows trees

(8) Mallows trees

Exact definition
(*) Mallows tree are a form of random binary search trees.

- Binary search trees are Labelled tree with the label of a node being Larger (smaller) than the labels of irs left (right) subtree.
- Mallows trees are obtained by inserting a Mallows permutation in a binary search tree.

$$
\rightarrow \mathbb{P}[\text { Mallows permutation }=\sigma] \sim q^{\text {Inv }(\sigma)} \text { inversion number of } \sigma
$$

(20) Sight path

(27) Bight path

$R_{n}=$ length of right path after n dots

$-R_{1}=0$	height $_{1}=0$
$-R_{2}=1$	height $_{2}=1$
$-R_{3}=2$	height $_{3}=2$
$-R_{6}=2$	height $_{4}=2$
$-R_{5}=2$	height $_{5}=3$
$-R_{6}=3$	height $_{6}=3$
$-R_{7}=3$	height $_{7}=3$
$-R_{8}=3$	height 2

Hope: $R_{n} \simeq$ height $_{n}$
(20) Right path

$M_{n}=$ position of the rightmost of the first n dots

$\cdot R_{1}=0$	$M_{1}=3$	height $_{1}=0$
$\cdot R_{2}=1$	$M_{2}=4$	height $_{2}=1$
$\cdot R_{3}=2$	$M_{3}=7$	height $_{3}=2$
$\cdot R_{6}=2$	$M_{4}=7$	height $_{6}=2$
$\cdot R_{5}=2$	$M_{5}=7$	heights $_{5}=3$
$\cdot R_{6}=3$	$M_{6}=9$	height $_{6}=3$
$\cdot R_{7}=3$	$M_{7}=9$	height $_{7}=3$
$\cdot R_{8}=3$	$M_{8}=9$	height $^{2}=4$

Hope: M_{n} helps finding R_{n}
(83) Links with Math 4 47

- Where is the Markov chain?
- Can you find the hidden Geometric and why their memorylss property is important?
- Cenerating functions ave easily computed for what variable?
- Are Mallows trees branching processes?
- Where is the coupling and why are we using it?
- Bonus: Markov's inequality is also widely used with which previous point? \rightarrow Markov's 'in 1 1 + + Lan. fun.
(20) Links with Math 443

Markov chains:
$\rightarrow\left(M_{n}\right)$ is a Markov chain.
\rightarrow it is not time homogeneous.
\rightarrow it is transient and converges to ∞ (it is increasing).
$\rightarrow\left(R_{n}, M_{n}\right)$ is also a Markov chain.
$\rightarrow\left(R_{n}\right)$ is probably not a Markov chain.
mun) The interesting object is $M_{n}-n$
(83) Links with Math 4 47

$$
\begin{aligned}
& M_{1}=3 \rightarrow M_{1}-1=2 \\
& M_{2}=4 \rightarrow M_{2}-2=2 \\
& M_{3}=7 \rightarrow M_{3}-3=4 \\
& M_{4}=7 \rightarrow M_{4}-4=3 \\
& M_{5}=7 \rightarrow M_{3}-5=2 \\
& M_{6}=9 \rightarrow M_{6}-6=3 \\
& M_{7}=9 \rightarrow M_{7}-7=2 \\
& M_{8}=9 \rightarrow M_{8}-8=1
\end{aligned}
$$

(8) Links with Math 4 4 57

Geometric:
$\rightarrow\left(M_{n} \cdot n\right)$ is a positive recurrent, time homogeneous M.C.
\rightarrow What is $P_{i j}$?
ar If a spot is empty with probability 1-q, how far is the first nonempty one: Geometric (1-q)
\rightarrow It follows that:

$$
P_{i j}= \begin{cases}\mathbb{P}[\text { Geometric }(1-q) \leqslant i] & \text { ip } j=i-1 \\ \mathbb{P}[\text { Geometric }(1-q)=j+1] & \text { o.w. }\end{cases}
$$

(87) Links with Math 4 4 57

Generating function:
\rightarrow It was already known that

$$
\rho(s)=\mathbb{E}\left[s^{R_{n}}\right]=\prod_{1<k \leq n}\left(1+(s-1) \frac{1-q}{1-q^{k}}\right)
$$

$\rightarrow \mathbb{P}\left[R_{n}=r\right]$ is quite complicated.

$$
\rightarrow \mathbb{E}\left[R_{n}\right]=\rho^{\prime}(1)=\sum_{1<k \leqslant n} \frac{1-q}{1-q^{k}}
$$

\rightarrow We extended to $\left(R_{n}, M_{n}\right)$:

$$
\mathbb{E}\left[s^{R_{n}} \cdot t^{M_{n}}\right]=\frac{t^{n}}{s} \cdot \prod_{1 \leqslant t \leqslant r}^{q+(1-q) s-q^{k}} \underset{1 \cdot t \cdot q^{k}}{\text { extended }} \begin{aligned}
& \text { generating }
\end{aligned}
$$

(23) Links with Math ss 3^{3}

Branching process:
\rightarrow Not a Galton. Watson tree.
\rightarrow Why?
\rightarrow Possibly a branching process?
\rightarrow Related to branching random walks:

* Galton -Watson trues with positions for the individuals, following random walks.
(8) Links with Math 4 4 57

Coupling:
\rightarrow The interest: connecting two (or more) random variables
\rightarrow Mallows trees are given with two parameters: n and q
\rightarrow There is no obvious reasons why they should be connections between the different parameters.
un) Using a single matrix, we can cover all $n \in \mathbb{N}$.
This is a coupling
(8) Links with Math 4 4 57

Coupling:
Why is this interesting?
mn) Relation between n-th tree and $(n+1)$-th tree:

* Proofs by induction.
(*) Rewrsif Mallows trees generating models.
* Direct extraction of properties: height increases with n. muss Relation between 9 and q^{\prime} trees. OPEN QUESTION: height decreases with q ?

