
Anomaly detection on graphs

Benoît Corsini

joint work with P.-A. Noël, D. Vázquez, & P. Taslakian



● Problem

● Method

● Algorithms

● Results



● Problem

● Method

● Algorithms

● Results



Anomaly detection in graphs

We are trying to solve unsupervised anomaly 
detection on graphs:

● Our input is a graph where the nodes have a 
given set of features.

● Our output can either be a binary labelling or a 
ranking of the nodes.

The output should reflect some sense of 
anomalousness of the nodes.

Why is this problem interesting?

● Relates to bot identification in social 
networks.

● Can help improve spam detection.
● Relates to various types of fraud: insurance, 

healthcare, financial, etc.

➔ A good anomaly detection method could also 
help other graph-based tasks, such as 
classification or clustering.



Defining anomalies

Defining anomalies on graphs is a difficult task 
since nodes have two types of information:

● Personal information, given by their features.
● Community information, given by their 

neighbours.

In that context, anomalies can have several forms:

● Feature-based anomalies: an anomaly can be 
defined uniquely based on its features.

● Graph-based anomalies: an anomaly can be 
defined uniquely based on its neighbours and 
the general graph structure.

● Combined anomalies: an anomaly can be 
defined not in the two previous ways, but by 
considering both its features and the general 
graph structure.



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Defining anomalies (an example)



Previous work

The literature in anomaly detection on graphs is very 
diverse and sparse.

We did not find direct baselines and had to base our 
work on the following articles.

● Multi-scale Anomaly Detection on Attribute 
Networks, L. Gutiérrez-Goméz, A. Bovet, J.-C. 
Delvenne, 2019

● Bayesian Robust Attributed Graph Clustering: 
Joint Learning of Partial Anomalies and 
Group Structure, A. Bojchevski, S. Günnemann, 
2018

● Maximum Entropy Generators for 
Energy-Based Models, R. Kumar, S. Ozair, A. 
Goyal, A. Courville, Y. Bengio, 2019



● Problem

● Method

● Algorithms

● Results



General approach

Since we are using an unsupervised method, we do 
not have access to labels or examples of 
anomalies.

This is a realistic approach since:

● Anomalies are rare.
● Anomalies might be very diverse.

➔ The only assumption we can make is that 
most nodes are normal.

With these constraints, the general approach to 
anomaly detection is to:

● Define some energy of the nodes, related to 
their likelihood of normality.

● Use this energy to identify anomalies:
○ by ranking the nodes;
○ by considering the nodes with highest 

energy;
○ by identifying a threshold in the energy 

distribution.



Our method

The idea:

● We will reproduce the original features of the 
nodes with their expected values.

● We first hide/mask some of the features and 
then try to recreate them using the rest of the 
information.

● Use Graph Neural Networks (GNNs) for their 
high representative power.

● Compare the reproduced features with the 
original ones to identify anomalies.

➔ Creation of two algorithms: HideGNN and 
MaskGNN.

The general method:

● Take the graph as input, with node features.
● Use one of our two algorithms (HideGNN or 

MaskGNN) to reproduce the node features.
● Use these reproduced features to augment 

the original dataset.
● Apply an anomaly detection algorithm (ADA) 

on the augmented dataset.



Our method



● Problem

● Method

● Algorithms

● Results



GNNs

GNNs are commonly used in machine learning 
methods on graphs.

They are based on a message-passing algorithm 
and have the advantage to:

● use both the node features and the graph 
structure;

● and not depend on the ordering of the nodes.



HideGNN

The method:

● Start by hiding a specific feature.
● Use a GNN on the other features to guess the 

hidden one.
● Repeat over all features.
● Eventually obtain a set of GNNs able to 

reproduce the original features.



MaskGNN

The method:

● Start by creating a random mask over all 
features.

● Replace the masked features by some value 
(usually 0).

● Use a GNN to reproduce all features but only 
optimize on the masked features.

● Resample the random mask.
● Eventually obtain a non-trivial GNN which 

reproduces the original features.



● Pros:
○ Faster to train and using a single GNN.
○ Elegant all-in-one tool.

● Cons:
○ More parameters.
○ If not properly parametrized, likely to 

miss some information.
○ Less stable.

● Pros:
○ Complete reproduction of the features.
○ Less parameters.

● Cons:
○ Heavier to train.
○ Do not use any information from the 

hidden feature.

                 MaskGNN                 HideGNN

Pros and Cons



Remarks

On our algorithms:

● They are theoretically able to overfit and 
recreate the original features of the dataset.

● They learn from both the graph structure and 
the features, and their output contains a lot of 
information from the graph.

● They use a novel method combining GNN 
with methods from NLP, which opens the 
door to new parallel between the two fields.

On our method:

● It allows for non graph-based algorithms to 
be efficiently applied on graphs.

● It could easily be used on other tasks.



● Problem

● Method

● Algorithms

● Results



Datasets

We tested our models on three datasets:

● Disney: 124 nodes and 6 anomalies.
● Books: 1418 nodes and 28 anomalies.
● Enron: 13533 nodes and 5 anomalies.

The inherent extreme statistics of these datasets 
makes this task complicated.

➔ Only Books allows an acceptable split into 
train/valid/test.

Disney Books Enron

Nodes 124 1418 13533

Edges 335 3695 176987

Features 32 21 18

Outliers 6 28 5



Experimental setup

● Since only Books can be split, we use this 
dataset to optimize our algorithms.

● Once we finish running the algorithms, we use 
parameters with the best results on valid of 
Books.

● We then compute and report the results on 
the test set of Books and on Disney and 
Enron.

➔ We compare the ADAs with or without using 
our algorithms.

Some problems we encountered:

● None of these datasets were already split 
before our experiments.

● The results previously reported seem to be 
using the test set for hyperparameter tuning.

● We re-computed these results using our 
framework and found great discrepancies. 
We also did not always manage to recreate 
their experiments.

● These previous methods also seemed to be 
using a modified version of the datasets, with 
less features.



Our results



A synthetic dataset (Thanksgiving)

To try and understand our algorithms and results 
better, we created a synthetic dataset:

● Composed of two communities;
● Each community having a given set of 

features.
● We then modify the features of some 

members of one community to have the 
features of the other community.

➔ This dataset only has combined anomalies 
and requires to use both the features and the 
graph structure.



Results on the synthetic dataset

Modifying the difference of mean between the two 
community features:

Modifying the number of connections between the 
two groups:



Thank you!


