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Representation
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More examples

(1, 2, 3, 4, 5, 6, 7) (7, 6, 5, 4, 3, 2, 1) (4, 2, 6, 1, 3, 5, 7) (4, 6, 2, 7, 5, 3, 1)
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Images (uniform permutations)
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Images (uniform permutations)
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Random models of permutations
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Random models of permutations

Definition (Mallows permutations)
A random Mallows permutation Xn,λ with parameters n ∈ N and λ ∈ [0, ∞) is defined by

P
[
Xn,λ = σ

]
= λInv(σ)

Zn,λ
,

where Inv(σ) = |{i < j : σ(i) > σ(j)}| is the number of inversions of σ and Zn,λ = Σσ∈Sn
λInv(σ)

is a normalizing constant.

Random models of binary search trees Random permutations Benôıt Corsini
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Random models of permutations

Definition (Record-biased permutations)
A random record-biased permutation Xn,λ with parameters n ∈ N and λ ∈ [0, ∞) is defined by

P
[
Xn,λ = σ

]
= λRec(σ)

Wn,λ
,

where Rec(σ) = |{i : ∀j < i, σ(i) > σ(j)}| is the number of records of σ and Wn,λ = Σσ∈Sn
λRec(σ)

is a normalizing constant.
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Random models of permutations

Summary

• A Mallows permutation X depends on Inv(σ) = |{i < j : σ(i) > σ(j)}| as follows

P
[
X = σ

]
∝ λInv(σ) .

• A record-biased permutation X depends on Rec(σ) = |{i : ∀j < i, σ(i) > σ(j)}| as follows

P
[
X = σ

]
∝ λRec(σ) .
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Inversions and records
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Inversions and records
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17



Inversions and records
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Inversions and records
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Inversions and records
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one square = one inversion
no square = record
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Inversions and records
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Inversions and records
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Images (Mallows permutations) P[X = σ] ∝ λ|{i<j:σ(i)>σ(j)}|
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Images (Mallows permutations) P[X = σ] ∝ λ|{i<j:σ(i)>σ(j)}|

λ = 0 λ = 0.5 λ = 0.8 λ = 0.9 λ = 0.95

λ = 0.97 λ = 0.99 λ = 0.997 λ = 1 λ = 1.02
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Images (record-biased permutations) P[X = σ] ∝ λ|{i:∀j<i,σ(i)>σ(j)}|
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Images (record-biased permutations) P[X = σ] ∝ λ|{i:∀j<i,σ(i)>σ(j)}|

λ = 0 λ = 1 λ = 5 λ = 10 λ = 20

λ = 50 λ = 100 λ = 200 λ = 1000 λ = 10000
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Binary search trees
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Binary search trees

Definition

A binary search tree is a binary labelled tree such that the label of each node is larger than the
labels of the nodes in its left subtree and smaller than the labels of the nodes in its right subtree.
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Binary search trees

Definition

A binary search tree is a binary labelled tree such that the label of each node is larger than the
labels of the nodes in its left subtree and smaller than the labels of the nodes in its right subtree.

Given a binary search tree, any new value has a unique position where it can be inserted in the
tree.
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Binary search trees

Definition

A binary search tree is a binary labelled tree such that the label of each node is larger than the
labels of the nodes in its left subtree and smaller than the labels of the nodes in its right subtree.

Given a binary search tree, any new value has a unique position where it can be inserted in the
tree.

→ Any sequence of distinct values corresponds to a unique binary search tree.
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An example
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An example

σ = (7, 5, 10, 9, 3, 1, 2, 6, 8, 4)
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An example

σ = (7, 5, 10, 9, 3, 1, 2, 6, 8, 4) 7
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More examples
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More examples

(1, 2, 3, 4, 5, 6, 7) (7, 6, 5, 4, 3, 2, 1) (4, 2, 6, 1, 3, 5, 7) (4, 6, 2, 7, 5, 3, 1)
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More examples

(1, 2, 3, 4, 5, 6, 7) (7, 6, 5, 4, 3, 2, 1) (4, 2, 6, 1, 3, 5, 7) (4, 6, 2, 7, 5, 3, 1)
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Binary search trees and matrix representation of permutations
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Binary search trees and matrix representation of permutations

σ = (7, 5, 10, 9, 3, 1, 2, 6, 8, 4)
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Binary search trees and matrix representation of permutations

σ = (7, 5, 10, 9, 3, 1, 2, 6, 8, 4)
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Binary search trees and matrix representation of permutations

σ = (7, 5, 10, 9, 3, 1, 2, 6, 8, 4)
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Images
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Images

Uniform permutation Mallows permutation Record-biased permutation

Random models of binary search trees Binary search trees Benôıt Corsini
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Images

Uniform permutation Mallows permutation Record-biased permutation
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A fun property!
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45



A fun property!

Why can we restrict λ to [0, 1] in the case of Mallows trees ?
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A fun property!
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A fun property!

σ = (7, 5, 10, 9, 3, 1, 2, 6, 8, 4)
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A fun property!

σ = (7, 5, 10, 9, 3, 1, 2, 6, 8, 4)
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A fun property!

σ = (7, 5, 10, 9, 3, 1, 2, 6, 8, 4)
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P[X = σ] ∝ λInv(σ)
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A fun property!

σ = (7, 5, 10, 9, 3, 1, 2, 6, 8, 4)
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52



Height of random binary search trees

Random models of binary search trees Height of random BSTs Benôıt Corsini
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Height of random binary search trees

Theorem (Devroye [1986])
Write Hn for the height of a binary search tree of drawn from a random uniform permutation of
size n. Then

Hn

c∗ log n
P−→ 1 ,

where c∗ = 4.311... is the unique solution to c log(2e/c) = 1 with c ≥ 2.
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Height of random binary search trees

Theorem (Devroye [1986])
Write Hn for the height of a binary search tree of drawn from a random uniform permutation of
size n. Then

Hn

c∗ log n
P−→ 1 ,

where c∗ = 4.311... is the unique solution to c log(2e/c) = 1 with c ≥ 2.

• The asymptotic behaviour is close to the optimal height, ⌈log2 n⌉.
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Height of random binary search trees

Theorem (Devroye [1986])
Write Hn for the height of a binary search tree of drawn from a random uniform permutation of
size n. Then

Hn

c∗ log n
P−→ 1 ,

where c∗ = 4.311... is the unique solution to c log(2e/c) = 1 with c ≥ 2.

• The asymptotic behaviour is close to the optimal height, ⌈log2 n⌉.
• c∗ relates to properties of branching processes.
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Height of Mallows trees
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Height of Mallows trees

Theorem (Addario-Berry and ♂ [2021])
Write Hn,λ for the height of a Mallows tree with parameters n and λ ∈ [0, 1]. Then

Hn,λ

n(1 − λ) + c∗ log n
P−→ 1 .
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Height of Mallows trees

Theorem (Addario-Berry and ♂ [2021])
Write Hn,λ for the height of a Mallows tree with parameters n and λ ∈ [0, 1]. Then

Hn,λ

n(1 − λ) + c∗ log n
P−→ 1 .

• When 1 − λ ≪ log n/n, the height looks like a RBST and behaves as c∗ log n.
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Height of Mallows trees

Theorem (Addario-Berry and ♂ [2021])
Write Hn,λ for the height of a Mallows tree with parameters n and λ ∈ [0, 1]. Then

Hn,λ

n(1 − λ) + c∗ log n
P−→ 1 .

• When 1 − λ ≪ log n/n, the height looks like a RBST and behaves as c∗ log n.
• When 1 − λ ≫ log n/n, the height looks “linear” and behaves as n(1 − λ).
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Height of Mallows trees

Theorem (Addario-Berry and ♂ [2021])
Write Hn,λ for the height of a Mallows tree with parameters n and λ ∈ [0, 1]. Then

Hn,λ

n(1 − λ) + c∗ log n
P−→ 1 .

• When 1 − λ ≪ log n/n, the height looks like a RBST and behaves as c∗ log n.
• When 1 − λ ≫ log n/n, the height looks “linear” and behaves as n(1 − λ).
• When 1 − λ ≃ log n/n, both terms contribute.
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61



Height of record-biased trees
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Height of record-biased trees

Theorem (♂ [2023+])
Write Hn,λ for the height of a record-biased tree with parameters n and λ ∈ [0, ∞). Then

Hn,λ

max
{
c∗ log n, λ log

(
1 + n

λ

)} P−→ 1 .
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Height of record-biased trees

Theorem (♂ [2023+])
Write Hn,λ for the height of a record-biased tree with parameters n and λ ∈ [0, ∞). Then

Hn,λ

max
{
c∗ log n, λ log

(
1 + n

λ

)} P−→ 1 .

• When λ ≤ c∗, the height looks like a RBST and behaves as c∗ log n.
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Height of record-biased trees

Theorem (♂ [2023+])
Write Hn,λ for the height of a record-biased tree with parameters n and λ ∈ [0, ∞). Then

Hn,λ

max
{
c∗ log n, λ log

(
1 + n

λ

)} P−→ 1 .

• When λ ≤ c∗, the height looks like a RBST and behaves as c∗ log n.
• When λ ≥ c∗, the height behaves as λ log(1+n/λ) and corresponds to the number of records.
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Height of record-biased trees

Theorem (♂ [2023+])
Write Hn,λ for the height of a record-biased tree with parameters n and λ ∈ [0, ∞). Then

Hn,λ

max
{
c∗ log n, λ log

(
1 + n

λ

)} P−→ 1 .

• When λ ≤ c∗, the height looks like a RBST and behaves as c∗ log n.
• When λ ≥ c∗, the height behaves as λ log(1+n/λ) and corresponds to the number of records.
• When λ is fixed, the height behaves as max{c∗, λ} log n.

Random models of binary search trees Height of random BSTs Benôıt Corsini
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Height of random models of binary search trees
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Height of random models of binary search trees

Summary

For random binary search trees
Hn ≃ c∗ log n .

For Mallows trees
Hn,λ ≃ n(1 − λ) + c∗ log n .

For record-biased trees

Hn,λ ≃ max
c∗ log n, λ log

(
1 + n/λ

) ≃ max{c∗, λ} log n .
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An important remark
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An important remark
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An important remark
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σ(1) − 1 = 6 nodes

n − σ(1) = 3 nodes
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An important remark

Tree of σ− =
(
σ(i) : σ(i) < σ(1)

)
Tree of σ+ =

(
σ(i) : σ(i) > σ(1)

)
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σ(1) − 1 = 6 nodes

n − σ(1) = 3 nodes
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Random binary search trees Hn ≃ c∗ log n
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Random binary search trees Hn ≃ c∗ log n

RBST
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Random binary search trees Hn ≃ c∗ log n

RBST
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Random binary search trees Hn ≃ c∗ log n

RBST

σ(1) − 1
= ⌊nU⌋
≃ nU

n − σ(1)
= ⌊n(1 − U)⌋
≃ nŨ

Random models of binary search trees Proof heuristics Benôıt Corsini
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Random binary search trees Hn ≃ c∗ log n

RBST
RBST

σ(1) − 1
= ⌊nU⌋
≃ nU

RBST

n − σ(1)
= ⌊n(1 − U)⌋
≃ nŨ
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Random binary search trees Hn ≃ c∗ log n

RBST
RBST

σ(1) − 1
= ⌊nU⌋
≃ nU

RBST

n − σ(1)
= ⌊n(1 − U)⌋
≃ nŨ

U Ũ

UL ŨL

nUUL nUŨL

UR ŨR

nŨUR nŨŨR
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n

MTλ
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n

MTλ
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n

MTλ

σ(1) = Geom(λ | n)
≃ n ∧ (1 − λ)−1
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n

MTλ

≃ (1 − λ)−1 ≃ n
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n

MTλ MTλ

≃ (1 − λ)−1

MTλ

≃ n
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n

MTλ

RBST

≃ (1 − λ)−1

MTλ

≃ n
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n

MTλ

RBST

≃ (1 − λ)−1

MTλ

≃ n

RBST

≃ (1 − λ)−1
RBST

≃ (1 − λ)−1

RBST

≃ (1 − λ)−1
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n

MTλ

RBST

≃ (1 − λ)−1

MTλ

≃ n

RBST

≃ (1 − λ)−1
RBST

≃ (1 − λ)−1

RBST

≃ (1 − λ)−1

n(1 − λ)
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n

MTλ

RBST

≃ (1 − λ)−1

MTλ

≃ n

RBST

≃ (1 − λ)−1
RBST

≃ (1 − λ)−1

RBST

≃ (1 − λ)−1

c∗ log(1 − λ)−1

n(1 − λ)
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Mallows trees Hn,λ ≃ n(1 − λ) + c∗ log n

MTλ

σ(1) = Geom(λ | n)
≃ n ∧ (1 − λ)−1

RBST

≃ (1 − λ)−1

MTλ

≃ n

RBST

≃ (1 − λ)−1
RBST

≃ (1 − λ)−1

RBST

≃ (1 − λ)−1

c∗ log(1 − λ)−1

n(1 − λ)
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Record-biased trees Hn,λ ≃ max{c∗, λ} log n
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Record-biased trees Hn,λ ≃ max{c∗, λ} log n
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RBTλ

σ(1) ≃ n · Beta(1, λ) = n ·
(
1 − Beta(λ, 1)

)
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• The contribution to the height of the i-th left subtree is

i + 1 + c∗ log
n(1 − Bi)Πj<iBj

 ≃ i + c∗ log n + c∗Σj<i log Bj .
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λ log n
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Record-biased trees Hn,λ ≃ max{c∗, λ} log n

RBST

≃ n(1 − B0)
RBST

≃ nB0(1 − B1)
RBST

≃ nB0B1(1 − B2)

λ log n

• The contribution to the height of the i-th left subtree is

i + 1 + c∗ log
n(1 − Bi)Πj<iBj

 ≃ i + c∗ log n + c∗Σj<i log Bj .

• We have E[log Bj] = −1/λ and thus Σj<i log Bj ≃ −i/λ.

• The length k of the right path satisfies
nΠj<kBj ≃ 1 ⇔ log n − k/λ ≃ 0

⇔ k ≃ λ log n .

→ Hn,λ ≃ max
i≤λ log n

c∗ log n + i(1 − c∗/λ)
 ≃ max{c∗, λ} log n .

Random models of binary search trees Proof heuristics Benôıt Corsini
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