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Representation

o= (7,5 10,9, 3, 1, 2, 6, 8, 4)
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Representation

o= (7,5 10,9, 3, 1, 2, 6, 8, 4) 1234567.891“
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More examples
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More examples

(1,2,3,4,5,6,7) (7,6,5,4,3,2,1) (4,2,6,1,3,5,7) (4,6,2,7,5,3,1)
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Images (uniform permutations)
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Images (uniform permutations)
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Random models of permutations

( Definition (Mallows permutations)

A random Mallows permutation X, \ with parameters n € N and A € |0, 00) is defined by
)\Inv(a)
Zn)\ 7

79

P{Xm)\ — O'} —

where Inv(e) = [{i < j : o(i) > o(j)}| is the number of inversions of o and Z, \ = X,cg A1)

)

is a normalizing constant.
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Random models of permutations

( Definition (Record-biased permutations)

A random record-biased permutation X, y with parameters n € N and A € |0, 00) is defined by
)\Rec(a)
Wn,)\ 7

where Rec(o) = |{i : Vj < i,0(i) > o(5)}| is the number of records of & and W,y = S,eg, AR)
is a normalizing constant.

P{Xn’)\ — 0'} —
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Random models of permutations

[

Summary

« A Mallows permutation X depends on Inv(c) = |{i < j : (i) > o(j)}| as follows
P[X = o] oc A7)

« A record-biased permutation X depends on Rec(o) = |{i : V] < i,0(i) > o(j)}| as follows
P[X = o] oc AR,
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Inversions and records

o
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Inversions and records

10
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Inversions and records

10
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Inversions and records

one square = one Inversion
Nno square = record

10

Random models of binary search trees Random permutations Benoit Corsini




Inversions and records

10
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Inversions and records

o
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Images (Mallows permutations)
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Images (Mallows permutations)

A=0.97 A =10.99 A =0.997 A=1 A=1.02
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Images (record-biased permutations) 12 | He ik e e e v
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Images (record-biased permutations) 12 | He ik e e e v

A = 10000
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Binary search trees

Random models of binary search trees Binary search trees Benoit Corsini




Binary search trees

( Definition

A binary search tree is a binary labelled tree such that the label of each node is larger than the
labels of the nodes in its left subtree and smaller than the labels of the nodes in its right subtree.

)
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Binary search trees

( Definition

A binary search tree is a binary labelled tree such that the label of each node is larger than the
labels of the nodes in its left subtree and smaller than the labels of the nodes in its right subtree.

Given a binary search tree, any new value has a unique position where it can be inserted in the

tree.
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Binary search trees

( Definition

A binary search tree is a binary labelled tree such that the label of each node is larger than the
labels of the nodes in its left subtree and smaller than the labels of the nodes in its right subtree.

)

Given a binary search tree, any new value has a unique position where it can be inserted in the

tree.

— Any sequence of distinct values corresponds to a unique binary search tree.
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An example
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An example

o= (7,5 10,9, 3, 1, 2, 6, 8, 4)
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An example

o= (7,5 10,9, 3, 1, 2, 6, 8, 4)
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More examples
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More examples

(1,2,3,4,5,6,7) (7,6,5,4,3,2,1) (4,2,6,1,3,5,7) (4,6,2,7,5,3,1)
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More examples

(1,2,3,4,5,6,7) (7,6,5,4,3,2,1) (4,2,6,1,3,5,7) (4,6,2,7,5,3,1)

| | | |
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Binary search trees and matrix representation of permutations
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Binary search trees and matrix representation of permutations

o= (7,5 10,9, 3,1, 2, 6, 8, 4)
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Binary search trees and matrix representation of permutations

o= (7,5 10,9, 3,1, 2, 6, 8, 4)

1 23456 789 10 o)

1 O Ut = W N =

o O

—_

~.
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Binary search trees and matrix representation of permutations

o= (7,5 10,9, 3,1, 2, 6, 8, 4)

123456789 10 o)

B 1 234567389 10 o)

S O 0 1 O U = W N =

—_

~.

L 2

CO 1] O Ct = W NN —

)

10
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Uniform permutation Mallows permutation Record-biased permutation
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Uniform permutation Mallows permutation Record-biased permutation
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A fun property!
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A fun property!

Why can we restrict A to |0, 1] in the case of Mallows trees 7
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A fun property!
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A fun property!

o=(7,5,10,9,3,1,2,6,8,4)

123456789 10 o)

1 O Ut = W N =

© oo

—_
o

1
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A fun property!

o= (7,5,10,9,3,1,2,6,8,4) & =(4,6,1,2,8,10,9,5,3,7)
1 23456 789 10 o) 1 23456789 10 o)
1 1
9 P
3 3
4 4
6 6
7 7
8 8
9 9
10 10
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A fun property!

o= (7,5,10,9,3,1,2,6,8,4) o= (4,6,1,2,8, 10,9,5,3,7)

123456 789 10 o) 1 23456789 10 o)
1 1
2 2
3 3
4 4
' ;
; é
9 9
10 10
P[X = o] oc A1)
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A fun property!

o= (7, 5,10,9,3,1,2, 6,8,4) o= (4, 0,1,2,8,10,9,5, 3, 7)
123456 789 10 o) 1 23456789 10 o)
1 1
2 2
3 3
4 4
' ;
; é
9 9
10 10
P[X = o] oc AV() P[X = o] oc A2V()

x A(g)—InV(a)
x (1/)\>Inv(a)
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Height of random binary search trees
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Height of random binary search trees

( Theorem (Devroye [1986])

Write H,, for the height of a binary search tree of drawn from a random uniform permutation of

size n. Then
Hn ]P)

> 1
c*logn

Y

where ¢* = 4.311... is the unique solution to clog(2e/c) = 1 with ¢ > 2.
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Height of random binary search trees

( Theorem (Devroye [1986])

Write H,, for the height of a binary search tree of drawn from a random uniform permutation of

size n. Then
Hn ]P)

> 1
c*logn

Y

where ¢* = 4.311... is the unique solution to clog(2e/c) = 1 with ¢ > 2.

« The asymptotic behaviour is close to the optimal height, [log, n].
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Height of random binary search trees

( Theorem (Devroye [1986])

Write H,, for the height of a binary search tree of drawn from a random uniform permutation of

size n. Then
Hn ]P)

> 1
c*logn

Y

where ¢* = 4.311... is the unique solution to clog(2e/c) = 1 with ¢ > 2.

« The asymptotic behaviour is close to the optimal height, [log, n].

« c* relates to properties of branching processes.
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Height of Mallows trees
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Height of Mallows trees

( Theorem (Addario-Berry and f [2021])

Write H,, ) for the height of a Mallows tree with parameters n and A € [0,1]. Then
Hn,)\ P
n(l —A) + c*logn

> 1.
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Height of Mallows trees

( Theorem (Addario-Berry and f [2021])

Write H,, ) for the height of a Mallows tree with parameters n and A € [0,1]. Then
Hn,)\ P
n(l —A) + c*logn

> 1.

« When 1 — X < log n/n, the height looks like a RBST and behaves as ¢*log n.
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Height of Mallows trees

( Theorem (Addario-Berry and f [2021])

Write H,, ) for the height of a Mallows tree with parameters n and A € [0,1]. Then
Hn,)\ P
n(l —A) + c*logn

> 1.

« When 1 — X < log n/n, the height looks like a RBST and behaves as ¢*log n.
« When 1 — A > log n/n, the height looks “linear” and behaves as n(1 — A).
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Height of Mallows trees

( Theorem (Addario-Berry and f [2021])

Write H,, ) for the height of a Mallows tree with parameters n and A € [0,1]. Then
Hn,)\ P
n(l —A) + c*logn

> 1.

« When 1 — X < log n/n, the height looks like a RBST and behaves as ¢*log n.
« When 1 — A > log n/n, the height looks “linear” and behaves as n(1 — A).
« When 1 — X ~ logn/n, both terms contribute.
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Height of record-biased trees

( Theorem (f [2023+])

Write H,, ) for the height of a record-biased tree with parameters n and A € |0, 00). Then
Hn,)\ P
max {c* logn, Alog (1 + ;‘)}

\
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Height of record-biased trees

( Theorem (f [2023+])

Write H,, ) for the height of a record-biased tree with parameters n and A € |0, 00). Then
Hn,)\ P
max {c* logn, Alog (1 + ;‘)}

\

« When A < ¢, the height looks like a RBST and behaves as ¢* log n.
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Height of record-biased trees

( Theorem (f [2023+])

Write H,, ) for the height of a record-biased tree with parameters n and A € |0, 00). Then
Hn,)\ P
max {c* logn, Alog (1 + ;‘)}

\

« When A < ¢, the height looks like a RBST and behaves as ¢* log n.
« When A\ > ¢*, the height behaves as Alog(1+n /) and corresponds to the number of records.
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Height of record-biased trees

( Theorem (f [2023+])

Write H,, ) for the height of a record-biased tree with parameters n and A € |0, 00). Then
Hn,)\ P
max {c* logn, Alog (1 + ;‘)}

\

« When A < ¢, the height looks like a RBST and behaves as ¢* log n.
« When A\ > ¢*, the height behaves as Alog(1+n /) and corresponds to the number of records.
« When A is fixed, the height behaves as max{c*, A} logn.
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Height of random models of binary search trees
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Height of random models of binary search trees

[

Summary

For random binary search trees
H, ~c"logn.

For Mallows trees
Hy)y>~n(l—X)+c"logn.

For record-biased trees

H, ) ~ max {c* log n, AMog (1 + n/A)} ~ max{c*, A} logn.
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An important remark
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An important remark
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An important remark

10 n —o(1l) = 3 nodes

o(1) — 1 =6 nodes

Random models of binary search trees Proof heuristics Benoit Corsini




An important remark

Tree of o_ = (o(i) : o(i) < o(1)) Tree of oy = (0(i) : o(i) > o(1))

10 n —o(1l) = 3 nodes

o(1) — 1 =6 nodes
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Random binary search trees
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Random binary search trees

RBST
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Random binary search trees

A £
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Random binary search trees

AS'I‘\ m
(1)—1 n—o(l)

= [nU] = [n(1-U)]

~ nU ~n
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Random binary search trees

RBST
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Random binary search trees

RBST

nUU; nUUL nUUR nUUp
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Mallows trees = n(lEsEEetlogn
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Mallows trees = n(lEsEEetlogn

MT,
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Mallows trees Haw=n(T=2) +clogn

A KA
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Mallows trees Haw=n(T=2) +clogn

A KA

o(1) = Geom(A | n)
~nA(l—=X\""1
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Mallows trees Haw=n(T=2) +clogn

A KA

2<1_>\)—1 ~n
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Mallows trees Haw=n(T=2) +clogn
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Mallows trees Haw=n(T=2) +clogn
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Mallows trees Hyp=m(l=X\) +clogn

MT,)
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Mallows trees Hyp=m(l=X\) +clogn

MT,)
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Mallows trees Hyp=m(l=X\) +clogn

MT,)
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Mallows trees Hyp=m(l=X\) +clogn

MT,)

o(1) = Geom(A | n)
~nA(l—=X\""1
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Record-biased trees H,, =~ max{c®, A} logn
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Record-biased trees H,, =~ max{c®, A} logn

RBT)
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Record-biased trees H,, =~ max{c®, A} logn

RBT)
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Record-biased trees H,, =~ max{c®, A} logn

RBT)

[ o(1) ~n - Beta(1,A) = n- (1 — Beta(), 1)) ]
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Record-biased trees H,, =~ max{c®, A} logn

RBT, ~ n(l — BO)

~ HBQ
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Record-biased trees H,, =~ max{c®, A} logn

RBT)
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Record-biased trees = max{c", A} logn

RBT)

~ TLB()Bl(l - BQ)
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Record-biased trees = max{c", A} logn

~ TLB()Bl(l - Bg)
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Record-biased trees H,, =~ max{c®, A} logn

e The contribution to the height of the i-th left subtree is

O..
L4
L J
L 4

~ TLB()Bl(l - Bg)
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Record-biased trees H,, =~ max{c®, A} logn

e The contribution to the height of the i-th left subtree is

o We have E[log B;] = —1/X and thus X,-;log B; >~ —i/\.

O..
L4
L J
L 4

~ TLB()Bl(l - Bg)
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Record-biased trees H,, =~ max{c®, A} logn

e The contribution to the height of the i-th left subtree is

o We have E[log B;] = —1/X and thus X,-;log B; >~ —i/\.

e The length k of the right path satisfies

nllcxBj ~1 & logn — k/A~0
& k>~ Mlogn. ~n(l — By)

O..
L4
L J
L 4

~ TLB()Bl(l - Bg)
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Record-biased trees H,, =~ max{c®, A} logn

e The contribution to the height of the i-th left subtree is

o We have E[log B;] = —1/X and thus X,-;log B; >~ —i/\. Alogn

e The length k of the right path satisfies

nllcxBj ~1 & logn — k/A~0
& k>~ Mlogn. ~n(l — By)

O..
L4
L J
L 4

~ TLB()Bl(l - Bg)
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Record-biased trees H,, =~ max{c®, A} logn

e The contribution to the height of the i-th left subtree is

o We have E[log B;] = —1/X and thus X,-;log B; >~ —i/\. Alogn

e The length k of the right path satisfies

nllcxBj ~1 & logn — k/A~0
& k>~ Mlogn. ~n(l — By)

O..
L4
L J
L 4

~ TLB()Bl(l - Bg)

— H, )~ max {c* logn +i(1 — c*/)\)} ~ max{c*, A} logn.

1<Alogn
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Open questions

e Second order behaviour?
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Open questions

e Second order behaviour?

— Known under some assumptions on A\ for Mallows trees.
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Open questions

e Second order behaviour?

— Known under some assumptions on A\ for Mallows trees.

— Unknown for record-biased trees.
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Open questions

e Second order behaviour?

— Known under some assumptions on A\ for Mallows trees.

— Unknown for record-biased trees.

« Other models of permutations?
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Open questions

e Second order behaviour?

— Known under some assumptions on A\ for Mallows trees.

— Unknown for record-biased trees.

« Other models of permutations?

— Ewens permutations.
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Open questions

« Second order behaviour?
— Known under some assumptions on A\ for Mallows trees.
— Unknown for record-biased trees.

« Other models of permutations?

— Ewens permutations.

— Random regenerative permutations.
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Open questions

« Second order behaviour?
— Known under some assumptions on A\ for Mallows trees.
— Unknown for record-biased trees.

« Other models of permutations?

— Ewens permutations.

— Random regenerative permutations.
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Open questions

« Second order behaviour?
— Known under some assumptions on A\ for Mallows trees.
— Unknown for record-biased trees.

« Other models of permutations?

— Ewens permutations.

— Random regenerative permutations.

Since we know that H,, y ~ n(l — \) + c¢*logn, can we prove that the height of a Mallows tree
is stochastically decreasing with respect to A € [0, 1]7
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