Random models of binary

search trees

Benoît Corsini

涺 Random permutations

轷 Binary search trees

1 Height of random models of binary search trees

Proof heuristics

Open questions

涺 Random permutations

Binary search trees

Height of random models of binary search trees

Proof heuristics

Open questions

Representation

Representation

$$
\sigma=(7,5,10,9,3,1,2,6,8,4)
$$

Representation

$$
\sigma=(7,5,10,9,3,1,2,6,8,4)
$$

More examples

More examples

$$
(1,2,3,4,5,6,7) \quad(7,6,5,4,3,2,1) \quad(4,2,6,1,3,5,7) \quad(4,6,2,7,5,3,1)
$$

More examples

Random models of permutations

Definition (Mallows permutations)

A random Mallows permutation $X_{n, \lambda}$ with parameters $n \in \mathbb{N}$ and $\lambda \in[0, \infty)$ is defined by

$$
\mathbb{P}\left[X_{n, \lambda}=\sigma\right]=\frac{\lambda^{\operatorname{Inv}(\sigma)}}{Z_{n, \lambda}},
$$

where $\operatorname{Inv}(\sigma)=|\{i<j: \sigma(i)>\sigma(j)\}|$ is the number of inversions of σ and $Z_{n, \lambda}=\Sigma_{\sigma \in S_{n}} \lambda^{\operatorname{lnv}(\sigma)}$ is a normalizing constant.

Random models of permutations

Definition (Record-biased permutations)
A random record-biased permutation $X_{n, \lambda}$ with parameters $n \in \mathbb{N}$ and $\lambda \in[0, \infty)$ is defined by

$$
\mathbb{P}\left[X_{n, \lambda}=\sigma\right]=\frac{\lambda^{\operatorname{Rec}(\sigma)}}{W_{n, \lambda}},
$$

where $\operatorname{Rec}(\sigma)=|\{i: \forall j<i, \sigma(i)>\sigma(j)\}|$ is the number of records of σ and $W_{n, \lambda}=\Sigma_{\sigma \in S_{n}} \lambda^{\operatorname{Rec}(\sigma)}$ is a normalizing constant.

Random models of permutations

Summary

- A Mallows permutation X depends on $\operatorname{Inv}(\sigma)=|\{i<j: \sigma(i)>\sigma(j)\}|$ as follows

$$
\mathbb{P}[X=\sigma] \propto \lambda^{\operatorname{Inv}(\sigma)} .
$$

- A record-biased permutation X depends on $\operatorname{Rec}(\sigma)=|\{i: \forall j<i, \sigma(i)>\sigma(j)\}|$ as follows

$$
\mathbb{P}[X=\sigma] \propto \lambda^{\operatorname{Rec}(\sigma)} .
$$

$\lambda=5$
$\lambda=200$

$\lambda=10$
$\lambda=20$

$\lambda=1000$
$\lambda=10000$

こ Random permutations

牵 Binary search trees

```
Height of random models of binary search trees
Proof heuristics
Open questions
```


Binary search trees

Binary search trees

Definition

A binary search tree is a binary labelled tree such that the label of each node is larger than the labels of the nodes in its left subtree and smaller than the labels of the nodes in its right subtree.

Binary search trees

Definition

A binary search tree is a binary labelled tree such that the label of each node is larger than the labels of the nodes in its left subtree and smaller than the labels of the nodes in its right subtree.

Given a binary search tree, any new value has a unique position where it can be inserted in the tree.

Definition

A binary search tree is a binary labelled tree such that the label of each node is larger than the labels of the nodes in its left subtree and smaller than the labels of the nodes in its right subtree.

Given a binary search tree, any new value has a unique position where it can be inserted in the tree.
\rightarrow Any sequence of distinct values corresponds to a unique binary search tree.

An example

$$
\sigma=(7,5,10,9,3,1,2,6,8,4)
$$

An example

$$
\sigma=(7,5,10,9,3,1,2,6,8,4)
$$

More examples

$$
(1,2,3,4,5,6,7) \quad(7,6,5,4,3,2,1) \quad(4,2,6,1,3,5,7) \quad(4,6,2,7,5,3,1)
$$

More examples

$$
\sigma=(7,5,10,9,3,1,2,6,8,4)
$$

Binary search trees and matrix representation of permutations

$$
\sigma=(7,5,10,9,3,1,2,6,8,4)
$$

Mallows permutation

Record-biased permutation

Images

A fun property!

A fun property!

Why can we restrict λ to $[0,1]$ in the case of Mallows trees?

A fun property!

A fun property!

$$
\sigma=(7,5,10,9,3,1,2,6,8,4)
$$

A fun property!

$$
\tilde{\sigma}=(4,6,1,2,8,10,9,5,3,7)
$$

A fun property!

$$
\mathbb{P}[X=\sigma] \propto \lambda^{\operatorname{Inv}(\sigma)}
$$

$$
\tilde{\sigma}=(4,6,1,2,8,10,9,5,3,7)
$$

A fun property!

$$
\mathbb{P}[X=\sigma] \propto \lambda^{\operatorname{Inv}(\sigma)}
$$

$$
\tilde{\sigma}=(4,6,1,2,8,10,9,5,3,7)
$$

$$
\begin{aligned}
\mathbb{P}[\tilde{X}=\sigma] & \propto \lambda^{\operatorname{Inv}(\tilde{\sigma})} \\
& \propto \lambda^{\binom{n}{2}-\operatorname{Inv}(\sigma)} \\
& \propto(1 / \lambda)^{\operatorname{Inv}(\sigma)}
\end{aligned}
$$

$\underset{\sim}{2}$ Random permutations

轷 Binary search trees

1 Height of random models of binary search trees

Proof heuristics

Open questions

Height of random binary search trees

Height of random binary search trees

Theorem (Devroye [1986])
Write H_{n} for the height of a binary search tree of drawn from a random uniform permutation of size n. Then

$$
\frac{H_{n}}{c^{*} \log n} \xrightarrow{\mathbb{P}} 1,
$$

where $c^{*}=4.311 \ldots$ is the unique solution to $c \log (2 e / c)=1$ with $c \geq 2$.

Height of random binary search trees

Theorem (Devroye [1986])
Write H_{n} for the height of a binary search tree of drawn from a random uniform permutation of size n. Then

$$
\frac{H_{n}}{c^{*} \log n} \xrightarrow{\mathbb{P}} 1,
$$

where $c^{*}=4.311 \ldots$ is the unique solution to $c \log (2 e / c)=1$ with $c \geq 2$.

- The asymptotic behaviour is close to the optimal height, $\left\lceil\log _{2} n\right\rceil$.

Height of random binary search trees

Theorem (Devroye [1986])
Write H_{n} for the height of a binary search tree of drawn from a random uniform permutation of size n. Then

$$
\frac{H_{n}}{c^{*} \log n} \xrightarrow{\mathbb{P}} 1,
$$

where $c^{*}=4.311 \ldots$ is the unique solution to $c \log (2 e / c)=1$ with $c \geq 2$.

- The asymptotic behaviour is close to the optimal height, $\left\lceil\log _{2} n\right\rceil$.
- c^{*} relates to properties of branching processes.

Height of Mallows trees

Height of Mallows trees

Theorem (Addario-Berry and $\mathbf{n}^{[2021])}$
Write $H_{n, \lambda}$ for the height of a Mallows tree with parameters n and $\lambda \in[0,1]$. Then

$$
\frac{H_{n, \lambda}}{n(1-\lambda)+c^{*} \log n} \xrightarrow{\mathbb{P}} 1 .
$$

Height of Mallows trees

Theorem (Addario-Berry and in [2021])
Write $H_{n, \lambda}$ for the height of a Mallows tree with parameters n and $\lambda \in[0,1]$. Then

$$
\frac{H_{n, \lambda}}{n(1-\lambda)+c^{*} \log n} \xrightarrow{\mathbb{P}} 1 .
$$

- When $1-\lambda \ll \log n / n$, the height looks like a RBST and behaves as $c^{*} \log n$.

Height of Mallows trees

Theorem (Addario-Berry and in [2021])
Write $H_{n, \lambda}$ for the height of a Mallows tree with parameters n and $\lambda \in[0,1]$. Then

$$
\frac{H_{n, \lambda}}{n(1-\lambda)+c^{*} \log n} \xrightarrow{\mathbb{P}} 1 .
$$

- When $1-\lambda \ll \log n / n$, the height looks like a RBST and behaves as $c^{*} \log n$.
- When $1-\lambda \gg \log n / n$, the height looks "linear" and behaves as $n(1-\lambda)$.

Height of Mallows trees

Theorem (Addario-Berry and in [2021])
Write $H_{n, \lambda}$ for the height of a Mallows tree with parameters n and $\lambda \in[0,1]$. Then

$$
\frac{H_{n, \lambda}}{n(1-\lambda)+c^{*} \log n} \xrightarrow{\mathbb{P}} 1 .
$$

- When $1-\lambda \ll \log n / n$, the height looks like a RBST and behaves as $c^{*} \log n$.
- When $1-\lambda \gg \log n / n$, the height looks "linear" and behaves as $n(1-\lambda)$.
- When $1-\lambda \simeq \log n / n$, both terms contribute.

Height of record-biased trees

Height of record-biased trees

Theorem ($\boldsymbol{T}[2023+]$)
Write $H_{n, \lambda}$ for the height of a record-biased tree with parameters n and $\lambda \in[0, \infty)$. Then

$$
\frac{H_{n, \lambda}}{\max \left\{c^{*} \log n, \lambda \log \left(1+\frac{n}{\lambda}\right)\right\}} \xrightarrow{\mathbb{P}} 1 .
$$

Height of record-biased trees

Theorem ($\mathrm{T}^{\boldsymbol{T}}[2023+]$)
Write $H_{n, \lambda}$ for the height of a record-biased tree with parameters n and $\lambda \in[0, \infty)$. Then

$$
\frac{H_{n, \lambda}}{\max \left\{c^{*} \log n, \lambda \log \left(1+\frac{n}{\lambda}\right)\right\}} \xrightarrow{\mathbb{P}} 1
$$

- When $\lambda \leq c^{*}$, the height looks like a RBST and behaves as $c^{*} \log n$.

Theorem ($\mathrm{T}^{\boldsymbol{T}}$ [2023+])
Write $H_{n, \lambda}$ for the height of a record-biased tree with parameters n and $\lambda \in[0, \infty)$. Then

$$
\frac{H_{n, \lambda}}{\max \left\{c^{*} \log n, \lambda \log \left(1+\frac{n}{\lambda}\right)\right\}} \xrightarrow{\mathbb{P}} 1
$$

- When $\lambda \leq c^{*}$, the height looks like a RBST and behaves as $c^{*} \log n$.
- When $\lambda \geq c^{*}$, the height behaves as $\lambda \log (1+n / \lambda)$ and corresponds to the number of records.

Height of record-biased trees

Theorem ($\dot{\boldsymbol{T}}^{[2023+])}$
Write $H_{n, \lambda}$ for the height of a record-biased tree with parameters n and $\lambda \in[0, \infty)$. Then

$$
\frac{H_{n, \lambda}}{\max \left\{c^{*} \log n, \lambda \log \left(1+\frac{n}{\lambda}\right)\right\}} \xrightarrow{\mathbb{P}} 1 .
$$

- When $\lambda \leq c^{*}$, the height looks like a RBST and behaves as $c^{*} \log n$.
- When $\lambda \geq c^{*}$, the height behaves as $\lambda \log (1+n / \lambda)$ and corresponds to the number of records.
- When λ is fixed, the height behaves as $\max \left\{c^{*}, \lambda\right\} \log n$.

Height of random models of binary search trees

Height of random models of binary search trees

Summary
For random binary search trees

$$
H_{n} \simeq c^{*} \log n .
$$

For Mallows trees

$$
H_{n, \lambda} \simeq n(1-\lambda)+c^{*} \log n .
$$

For record-biased trees

$$
H_{n, \lambda} \simeq \max \left\{c^{*} \log n, \lambda \log (1+n / \lambda)\right\} \simeq \max \left\{c^{*}, \lambda\right\} \log n .
$$

\leadsto Random permutations

轷 Binary search trees

1 Height of random models of binary search trees
4. Proof heuristics

解 Open questions

An important remark

Tree of $\sigma_{-}=(\sigma(i): \sigma(i)<\sigma(1))$

Tree of $\sigma_{+}=(\sigma(i): \sigma(i)>\sigma(1))$

Random binary search trees
 $$
H_{n} \simeq c^{*} \log n
$$

Random binary search trees $H_{n} \simeq c^{*} \log n$

Random binary search trees

 $H_{n, \lambda} \simeq n(1-\lambda)+c^{*} \log n$

$$
H_{n, \lambda} \sim n(1-\lambda)+c^{*} \log n
$$

$H_{n, \lambda} \simeq n(1-\lambda)+c^{*} \log n$

$$
\begin{aligned}
\sigma(1) & =\operatorname{Geom}(\lambda \mid n) \\
& \simeq n \wedge(1-\lambda)^{-1}
\end{aligned}
$$

$H_{n, \lambda} \simeq n(1-\lambda)+c^{*} \log n$

$H_{n, \lambda} \simeq n(1-\lambda)+c^{*} \log n$

$H_{n, \lambda} \simeq n(1-\lambda)+c^{*} \log n$

$H_{n, \lambda} \simeq n(1-\lambda)+c^{*} \log n$

$H_{n, \lambda} \simeq \max \left\{c^{c^{*}, \lambda}, \lambda\right\} \log n$

$H_{n, \lambda} \simeq \max \left\{c^{*}, \lambda\right\} \log n$

Record-biased trees
 $H_{n, \lambda} \simeq \max \left\{c^{*}, \lambda\right\} \log n$

Record-biased trees

- The contribution to the height of the i-th left subtree is

$$
i+1+c^{*} \log \left(n\left(1-B_{i}\right) \Pi_{j<i} B_{j}\right) \simeq i+c^{*} \log n+c^{*} \Sigma_{j<i} \log B_{j} .
$$

- The contribution to the height of the i-th left subtree is

$$
i+1+c^{*} \log \left(n\left(1-B_{i}\right) \Pi_{j<i} B_{j}\right) \simeq i+c^{*} \log n+c^{*} \Sigma_{j<i} \log B_{j} .
$$

- We have $\mathbb{E}\left[\log B_{j}\right]=-1 / \lambda$ and thus $\Sigma_{j<i} \log B_{j} \simeq-i / \lambda$.
- The contribution to the height of the i-th left subtree is

$$
i+1+c^{*} \log \left(n\left(1-B_{i}\right) \Pi_{j<i} B_{j}\right) \simeq i+c^{*} \log n+c^{*} \Sigma_{j<i} \log B_{j} .
$$

- We have $\mathbb{E}\left[\log B_{j}\right]=-1 / \lambda$ and thus $\Sigma_{j<i} \log B_{j} \simeq-i / \lambda$.
- The length k of the right path satisfies

$$
\begin{aligned}
n \Pi_{j<k} B_{j} \simeq 1 & \Leftrightarrow \log n-k / \lambda \simeq 0 \\
& \Leftrightarrow k \simeq \lambda \log n .
\end{aligned}
$$

- The contribution to the height of the i-th left subtree is

$$
i+1+c^{*} \log \left(n\left(1-B_{i}\right) \Pi_{j<i} B_{j}\right) \simeq i+c^{*} \log n+c^{*} \Sigma_{j<i} \log B_{j} .
$$

- We have $\mathbb{E}\left[\log B_{j}\right]=-1 / \lambda$ and thus $\Sigma_{j<i} \log B_{j} \simeq-i / \lambda$.
- The length k of the right path satisfies

$$
\begin{aligned}
n \Pi_{j<k} B_{j} \simeq 1 & \Leftrightarrow \log n-k / \lambda \simeq 0 \\
& \Leftrightarrow k \simeq \lambda \log n .
\end{aligned}
$$

- The contribution to the height of the i-th left subtree is

$$
i+1+c^{*} \log \left(n\left(1-B_{i}\right) \Pi_{j<i} B_{j}\right) \simeq i+c^{*} \log n+c^{*} \Sigma_{j<i} \log B_{j} .
$$

- We have $\mathbb{E}\left[\log B_{j}\right]=-1 / \lambda$ and thus $\Sigma_{j<i} \log B_{j} \simeq-i / \lambda$.
- The length k of the right path satisfies

$$
\begin{aligned}
n \Pi_{j<k} B_{j} \simeq 1 & \Leftrightarrow \log n-k / \lambda \simeq 0 \\
& \Leftrightarrow k \simeq \lambda \log n .
\end{aligned}
$$

$$
\rightarrow H_{n, \lambda} \simeq \max _{i \leq \lambda \log n}\left\{c^{*} \log n+i\left(1-c^{*} / \lambda\right)\right\} \simeq \max \left\{c^{*}, \lambda\right\} \log n .
$$

```
2# Random permutations
Binary search trees
Height of random models of binary search trees
Proof heuristics
```


\qquad

Open questions

- Second order behaviour?
- Second order behaviour?
- Known under some assumptions on λ for Mallows trees.
- Second order behaviour?
- Known under some assumptions on λ for Mallows trees.
- Unknown for record-biased trees.
- Second order behaviour?
- Known under some assumptions on λ for Mallows trees.
- Unknown for record-biased trees.
- Other models of permutations?
- Second order behaviour?
- Known under some assumptions on λ for Mallows trees.
- Unknown for record-biased trees.
- Other models of permutations?
- Ewens permutations.
- Second order behaviour?
- Known under some assumptions on λ for Mallows trees.
- Unknown for record-biased trees.
- Other models of permutations?
- Ewens permutations.
- Random regenerative permutations.
- Second order behaviour?
- Known under some assumptions on λ for Mallows trees.
- Unknown for record-biased trees.
- Other models of permutations?
- Ewens permutations.
- Random regenerative permutations.
- Second order behaviour?
- Known under some assumptions on λ for Mallows trees.
- Unknown for record-biased trees.
- Other models of permutations?
- Ewens permutations.
- Random regenerative permutations.

Since we know that $H_{n, \lambda} \simeq n(1-\lambda)+c^{*} \log n$, can we prove that the height of a Mallows tree is stochastically decreasing with respect to $\lambda \in[0,1]$?

References

- Addario-Berry, L., \& Corsini, B. (2021). The height of Mallows trees. The Annals of Probability, 49(5), 2220-2271.
- Auger, N., Bouvel, M., Nicaud, C., \& Pivoteau, C. (2016). Analysis of algorithms for permutations biased by their number of records. arXiv preprint arXiv:1605.02905.
- Corsini, B. (2021). The height of record-biased trees. Random Structures \mathcal{E} Algorithms.
- Devroye, L. (1986). A note on the height of binary search trees. Journal of the ACM (JACM), 33(3), 489-498.
- Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoretical population biology, 3(1), 87-112.
- Mallows, C. L. (1957). Non-null ranking models. I. Biometrika, 44(1/2), 114-130.
- Pitman, J., \& Tang, W. (2019). Regenerative random permutations of integers. The Annals of Probability, 47(3), 1378-1416.

Thank you!

Thank you!

Thank you! Thank you!

