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Binary Search Trees

Let P = {(z;,4;) : 1 < i < n} be a set of points with distinct coordinates. We construct the
binary search tree from P as follows.

o Order the points (z(1),%(1)), - - - » (T(n), Yin)) Using their z-coordinates: x(;) < ... < x(y).
e Insert y(1),...,Yn) in that order into a binary search tree, that is:

o () is placed at the root.

o Given that the tree of y(1),. ..,y is constructed, y ;1) is inserted down the tree until there
is a free space, going right if it is larger than the current value and left otherwise.

— Seen as storing devices, we are often interested in the “worst case retrieval time", corresponding
to the height of the binary search tree.
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Random Binary Search Tree

It is natural to wonder what happens in the following two scenarios.
o The values of the entries are iid (x; = ¢ and (y;)1<;<p iid).

o The x (or y)-coordinates are randomized (P’ = {(x,(;),¥:)} for a uniform permutation o).

— Since the structure of the tree only depends on the relative positions of the points, both trees
are identically distributed and referred to as random binary search trees (RBST).

( Devroye (1986)

Let H,, be the height of a RBST of size n. Then there exists a constant ¢* ~ 4.311 ... such that
H,

> 1.
c*logn
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Permuton Samples

From the previous case, we understand the behaviour of the height of the binary search tree when
{(zs,y:)} and {2,(;), y;} are identically distributed for all 0.

— Can we study more general point processes?

Pick your favourite “non-atomic” distribution on R? and sample n points accordingly.

— What happens for the height of the tree as n — oo?
— Under what hypothesis do we still get the height of a RBST (i.e. ¢*logn)?

Since the structure of the tree is only define by the relative positions of the points, we can add two
extra assumptions on this distribution:

o lts support is [0, 1).

e |t has uniform marginals.

— We call such a distribution a permuton.
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Consider the following approximate argument.

o If the left band has width ¢, there are en points in it.
o The tree of these first en points is a RBST.

o The height of this top (or left) tree is c* log(en).

e The vertical distance between two points in the left band is 1/en.

RBST RBSTs

e The number of points in each band on the right is (1 —¢€)/e.
e The subtrees on the right are RBSTs.

o The height of the right subtrees is ¢* log((1 — €)/¢).

—+ The height of the whole tree is ¢*logn.

A While the average width of a band is 1/en, the maximal width is
actually of order log n/n.
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Let p be a permuton with a density. Further assume that this density is bounded on [0, 1]* and
positive continuous on a neighbourhood of {0} x [0, 1] (the left boundary). Then, by letting H,,(p)
be the height of a binary search tree built from a sample of n points acording to p, we have

H,(p)
c*logn

> 1,

where the convergence occurs in probability and in L, for any p > 1.

Benoit Corsini
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Our result

The conditions of the theorem can be understood as follows.

o Close to the left border of [0, 1]°, we need:
o a density,
o positive, and
o continuous.
e On the rest of the square to the right, we need:
o a bounded density.

— We will now see why these conditions are necessary.
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Consider the following distribution:
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p(A) = |{x € [0,€| : (z,x) EA}‘lJr

AN e, 1]2‘2.

In that case, the tree looks like:
e a right path composed of en points,
e to which a RBST on (1 — €)n points is attached.

— The height is en + ¢* log(1 — €)n ~ en.
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In that case, the tree looks like:

e a RBST on n/2 points,

e to which a RBST on n/2 points is attached;

e this attachment is at the end of the rightmost path.
The rightmost path of a RBST has length log n.
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In that case, the tree looks like:

e a RBST on n/2 points,

e to which a RBST on n/2 points is attached;

e this attachment is at the end of the rightmost path.
The rightmost path of a RBST has length log n.

— The height is log(n/2) + ¢*log(n/2) ~ (¢* + 1) log n.
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Condition: positive continuous left density

Consider the following distribution:

p(A) = ZUAH {(z,y) €[0,1)*:y —x €[0,1/2] mod l}u .

In that case, we consider the top /n/2 triangles.
e Each such triangle contains 1 points on average.
e They form part of the rightmost path of the tree.
e The height is at least the number of triangles with 1 point.

— The height is at least of order \/n.

— By “smoothing” the density, we can get a height of order n!/279,
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