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30



Binary Search Trees

Let P = {(xi, yi) : 1 ≤ i ≤ n} be a set of points with distinct coordinates. We construct the
binary search tree from P as follows.
• Order the points (x(1), y(1)), . . . , (x(n), y(n)) using their x-coordinates: x(1) < . . . < x(n).
• Insert y(1), . . . , y(n) in that order into a binary search tree, that is:

◦ y(1) is placed at the root.
◦ Given that the tree of y(1), . . . , y(i) is constructed, y(i+1) is inserted down the tree until there

is a free space, going right if it is larger than the current value and left otherwise.

The permuton tree Binary search trees Benôıt Corsini
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It is natural to wonder what happens in the following two scenarios.
• The values of the entries are iid (xi = i and (yi)1≤i≤n iid).
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→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ Since the structure of the tree only depends on the relative positions of the points, both trees
are identically distributed and referred to as random binary search trees (RBST).

Devroye (1986)
Let Hn be the height of a RBST of size n. Then there exists a constant c∗ ≃ 4.311 . . . such that

Hn

c∗ log n
−→ 1 .
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51



Permuton Samples

From the previous case, we understand the behaviour of the height of the binary search tree when
{(xi, yi)} and {xσ(i), yi} are identically distributed for all σ.
→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ Can we study more general point processes?

Pick your favourite “non-atomic” distribution on R2 and sample n points accordingly.
→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ What happens for the height of the tree as n → ∞?
→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ Under what hypothesis do we still get the height of a RBST (i.e. c∗ log n)?

Since the structure of the tree is only define by the relative positions of the points, we can add two
extra assumptions on this distribution:
• Its support is [0, 1]2.
• It has uniform marginals.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ We call such a distribution a permuton.

The permuton tree Permutons Benôıt Corsini
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73



A simple case

Thanks to Devroye’s result, we know that:
• the uniform permuton on [0, 1]2 leads to a tree of height c∗ log n; and
• this result also extends to any distribution on a rectangle of R2 independent of x or y.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ What happens in general when the distribution admits a density?

The permuton tree Our results Benôıt Corsini
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90



A simple case

RBST RBSTs

ϵ

Consider the following approximate argument.
• If the left band has width ϵ, there are ϵn points in it.
• The tree of these first ϵn points is a RBST.

◦ The height of this top (or left) tree is c∗ log(ϵn).
• The vertical distance between two points in the left band is 1/ϵn.
• The number of points in each band on the right is (1 − ϵ)/ϵ.
• The subtrees on the right are RBSTs.

◦ The height of the right subtrees is c∗ log((1 − ϵ)/ϵ).

The permuton tree Our results Benôıt Corsini
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 While the average width of a band is 1/ϵn, the maximal width is
actually of order log n/n.
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Our result

♂, Dubach, Féray (2024)
Let ρ be a permuton with a density. Further assume that this density is bounded on [0, 1]2 and
positive continuous on a neighbourhood of {0} × [0, 1] (the left boundary). Then, by letting Hn(ρ)
be the height of a binary search tree built from a sample of n points acording to ρ, we have

Hn(ρ)
c∗ log n

−→ 1 ,

where the convergence occurs in probability and in Lp, for any p ≥ 1.
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Let ρ be a permuton with a density. Further assume that this density is bounded on [0, 1]2 and
positive continuous on a neighbourhood of {0} × [0, 1] (the left boundary). Then, by letting Hn(ρ)
be the height of a binary search tree built from a sample of n points acording to ρ, we have

Hn(ρ)
c∗ log n

−→ 1 ,

where the convergence occurs in probability and in Lp, for any p ≥ 1.

The permuton tree Our results Benôıt Corsini
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110



Thank you!
Thank you!
Thank you!

Thank you!
Thank you!

Thank you!
Thank you!

Thankyou!

Thank you! Thank you!Thank you!Thank you!

The permuton tree Thank you! Benôıt Corsini
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∣∣∣{x ∈ [0, ϵ] : (x, x) ∈ A

}∣∣∣
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∣∣∣
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→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The height is ϵn + c∗ log(1 − ϵ)n ∼ ϵn.
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Condition: positive left density
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Condition: positive left density

Consider the following distribution:

ρ(A) = 1
ϵ

∣∣∣A ∩ [0, ϵ]2
∣∣∣
2

+ 1
1 − ϵ

∣∣∣A ∩ [ϵ, 1]2
∣∣∣
2
.

The permuton tree The conditions Benôıt Corsini
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Condition: positive left density

Consider the following distribution:

ρ(A) = 1
ϵ

∣∣∣A ∩ [0, ϵ]2
∣∣∣
2

+ 1
1 − ϵ

∣∣∣A ∩ [ϵ, 1]2
∣∣∣
2
.
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Condition: positive left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩ [0, 1/2]2

∣∣∣
2

+
∣∣∣A ∩ [1/2, 1]2

∣∣∣
2

]
.
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Condition: positive left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩ [0, 1/2]2

∣∣∣
2

+
∣∣∣A ∩ [1/2, 1]2

∣∣∣
2

]
.

In that case, the tree looks like:
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Condition: positive left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩ [0, 1/2]2

∣∣∣
2

+
∣∣∣A ∩ [1/2, 1]2

∣∣∣
2

]
.

In that case, the tree looks like:
• a RBST on n/2 points,
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Condition: positive left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩ [0, 1/2]2

∣∣∣
2

+
∣∣∣A ∩ [1/2, 1]2

∣∣∣
2

]
.

In that case, the tree looks like:
• a RBST on n/2 points,
• to which a RBST on n/2 points is attached;
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Condition: positive left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩ [0, 1/2]2

∣∣∣
2

+
∣∣∣A ∩ [1/2, 1]2

∣∣∣
2

]
.

In that case, the tree looks like:
• a RBST on n/2 points,
• to which a RBST on n/2 points is attached;
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Condition: positive left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩ [0, 1/2]2

∣∣∣
2

+
∣∣∣A ∩ [1/2, 1]2

∣∣∣
2

]
.

In that case, the tree looks like:
• a RBST on n/2 points,
• to which a RBST on n/2 points is attached;
• this attachment is at the end of the rightmost path.
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Condition: positive left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩ [0, 1/2]2

∣∣∣
2

+
∣∣∣A ∩ [1/2, 1]2

∣∣∣
2

]
.

In that case, the tree looks like:
• a RBST on n/2 points,
• to which a RBST on n/2 points is attached;
• this attachment is at the end of the rightmost path.

The rightmost path of a RBST has length log n.
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Condition: positive left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩ [0, 1/2]2

∣∣∣
2

+
∣∣∣A ∩ [1/2, 1]2

∣∣∣
2

]
.

In that case, the tree looks like:
• a RBST on n/2 points,
• to which a RBST on n/2 points is attached;
• this attachment is at the end of the rightmost path.

The rightmost path of a RBST has length log n.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The height is log(n/2) + c∗ log(n/2) ∼ (c∗ + 1) log n.

The permuton tree The conditions Benôıt Corsini
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Condition: positive continuous left density
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Condition: positive continuous left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩

{
(x, y) ∈ [0, 1]2 : y − x ∈ [0, 1/2] mod 1

}∣∣∣
2

]
.
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Condition: positive continuous left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩

{
(x, y) ∈ [0, 1]2 : y − x ∈ [0, 1/2] mod 1

}∣∣∣
2

]
.
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Condition: positive continuous left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩

{
(x, y) ∈ [0, 1]2 : y − x ∈ [0, 1/2] mod 1

}∣∣∣
2

]
.

In that case, we consider the top
√

n/2 triangles.
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Condition: positive continuous left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩

{
(x, y) ∈ [0, 1]2 : y − x ∈ [0, 1/2] mod 1

}∣∣∣
2

]
.

In that case, we consider the top
√

n/2 triangles.
• Each such triangle contains 1 points on average.
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Condition: positive continuous left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩

{
(x, y) ∈ [0, 1]2 : y − x ∈ [0, 1/2] mod 1

}∣∣∣
2

]
.

In that case, we consider the top
√

n/2 triangles.
• Each such triangle contains 1 points on average.
• They form part of the rightmost path of the tree.
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Condition: positive continuous left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩

{
(x, y) ∈ [0, 1]2 : y − x ∈ [0, 1/2] mod 1

}∣∣∣
2

]
.

In that case, we consider the top
√

n/2 triangles.
• Each such triangle contains 1 points on average.
• They form part of the rightmost path of the tree.
• The height is at least the number of triangles with 1 point.
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Condition: positive continuous left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩

{
(x, y) ∈ [0, 1]2 : y − x ∈ [0, 1/2] mod 1

}∣∣∣
2

]
.

In that case, we consider the top
√

n/2 triangles.
• Each such triangle contains 1 points on average.
• They form part of the rightmost path of the tree.
• The height is at least the number of triangles with 1 point.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The height is at least of order
√

n.
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Condition: positive continuous left density

Consider the following distribution:

ρ(A) = 2
[∣∣∣A ∩

{
(x, y) ∈ [0, 1]2 : y − x ∈ [0, 1/2] mod 1

}∣∣∣
2

]
.

In that case, we consider the top
√

n/2 triangles.
• Each such triangle contains 1 points on average.
• They form part of the rightmost path of the tree.
• The height is at least the number of triangles with 1 point.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The height is at least of order
√

n.
→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ By “smoothing” the density, we can get a height of order n1/2−δ.

The permuton tree The conditions Benôıt Corsini
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Condition: right density
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Condition: right density

Consider the following distribution:

ρ(A) =
∣∣∣A ∩ [0, ϵ] × [0, 1]

∣∣∣
2

+
∣∣∣{x ∈ [ϵ, 1] :

(
x, (x − ϵ)/(1 − ϵ)

)
∈ A

}∣∣∣
1
.
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Condition: right density

Consider the following distribution:

ρ(A) =
∣∣∣A ∩ [0, ϵ] × [0, 1]

∣∣∣
2

+
∣∣∣{x ∈ [ϵ, 1] :

(
x, (x − ϵ)/(1 − ϵ)

)
∈ A

}∣∣∣
1
.

The permuton tree The conditions Benôıt Corsini
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Condition: right density

Consider the following distribution:

ρ(A) =
∣∣∣A ∩ [0, ϵ] × [0, 1]

∣∣∣
2

+
∣∣∣{x ∈ [ϵ, 1] :

(
x, (x − ϵ)/(1 − ϵ)

)
∈ A

}∣∣∣
1
.

In that case, the tree looks like:

The permuton tree The conditions Benôıt Corsini
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Condition: right density

Consider the following distribution:

ρ(A) =
∣∣∣A ∩ [0, ϵ] × [0, 1]

∣∣∣
2

+
∣∣∣{x ∈ [ϵ, 1] :

(
x, (x − ϵ)/(1 − ϵ)

)
∈ A

}∣∣∣
1
.

In that case, the tree looks like:
• a RBST on ϵn nodes at the top,

The permuton tree The conditions Benôıt Corsini
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Condition: right density

Consider the following distribution:

ρ(A) =
∣∣∣A ∩ [0, ϵ] × [0, 1]

∣∣∣
2

+
∣∣∣{x ∈ [ϵ, 1] :

(
x, (x − ϵ)/(1 − ϵ)

)
∈ A

}∣∣∣
1
.

In that case, the tree looks like:
• a RBST on ϵn nodes at the top,
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Condition: right density

Consider the following distribution:

ρ(A) =
∣∣∣A ∩ [0, ϵ] × [0, 1]

∣∣∣
2

+
∣∣∣{x ∈ [ϵ, 1] :

(
x, (x − ϵ)/(1 − ϵ)

)
∈ A

}∣∣∣
1
.

In that case, the tree looks like:
• a RBST on ϵn nodes at the top,
• on which we attach linear subtrees.
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Condition: right density

Consider the following distribution:

ρ(A) =
∣∣∣A ∩ [0, ϵ] × [0, 1]

∣∣∣
2

+
∣∣∣{x ∈ [ϵ, 1] :

(
x, (x − ϵ)/(1 − ϵ)

)
∈ A

}∣∣∣
1
.

In that case, the tree looks like:
• a RBST on ϵn nodes at the top,
• on which we attach linear subtrees;
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Condition: right density

Consider the following distribution:

ρ(A) =
∣∣∣A ∩ [0, ϵ] × [0, 1]

∣∣∣
2

+
∣∣∣{x ∈ [ϵ, 1] :

(
x, (x − ϵ)/(1 − ϵ)

)
∈ A

}∣∣∣
1
.

In that case, the tree looks like:
• a RBST on ϵn nodes at the top,
• on which we attach linear subtrees;
• these subtrees have a bounded average size,
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Condition: right density

Consider the following distribution:

ρ(A) =
∣∣∣A ∩ [0, ϵ] × [0, 1]

∣∣∣
2

+
∣∣∣{x ∈ [ϵ, 1] :

(
x, (x − ϵ)/(1 − ϵ)

)
∈ A

}∣∣∣
1
.

In that case, the tree looks like:
• a RBST on ϵn nodes at the top,
• on which we attach linear subtrees;
• these subtrees have a bounded average size,
• but the largest such subtree has size (1 − ϵ)ϵ−1 log n.
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Condition: right density

Consider the following distribution:

ρ(A) =
∣∣∣A ∩ [0, ϵ] × [0, 1]

∣∣∣
2

+
∣∣∣{x ∈ [ϵ, 1] :

(
x, (x − ϵ)/(1 − ϵ)

)
∈ A

}∣∣∣
1
.

In that case, the tree looks like:
• a RBST on ϵn nodes at the top,
• on which we attach linear subtrees;
• these subtrees have a bounded average size,
• but the largest such subtree has size (1 − ϵ)ϵ−1 log n.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The height is at least (1 − ϵ)ϵ−1 log n.
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