Local limit of Mallows trees

Benoint Corsini

轷 Binary search trees

重 Mallows trees

牵 Local limit

参 Redwood trees

Binary search trees

Mallows trees

Local limit

Redwood trees

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

- Insert x_{1} at the root.

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

- Insert x_{1} at the root.
- Insert x_{i} down the tree by going to the left (respectively right) if x_{i} is smaller (respectively larger) than the current node value.

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

- Insert x_{1} at the root.
- Insert x_{i} down the tree by going to the left (respectively right) if x_{i} is smaller (respectively larger) than the current node value.
$\rightarrow x=(4,1,8,6,9)$

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

- Insert x_{1} at the root.
- Insert x_{i} down the tree by going to the left (respectively right) if x_{i} is smaller (respectively larger) than the current node value.
$\rightarrow x=(4,1,8,6,9)$

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

- Insert x_{1} at the root.
- Insert x_{i} down the tree by going to the left (respectively right) if x_{i} is smaller (respectively larger) than the current node value.
$\rightarrow x=(4,1,8,6,9)$

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

- Insert x_{1} at the root.
- Insert x_{i} down the tree by going to the left (respectively right) if x_{i} is smaller (respectively larger) than the current node value.
$\rightarrow x=(4,1,8,6,9)$

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

- Insert x_{1} at the root.
- Insert x_{i} down the tree by going to the left (respectively right) if x_{i} is smaller (respectively larger) than the current node value.
$\rightarrow x=(4,1,8,6,9)$

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

- Insert x_{1} at the root.
- Insert x_{i} down the tree by going to the left (respectively right) if x_{i} is smaller (respectively larger) than the current node value.
$\rightarrow x=(4,1,8,6,9)$

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

- Insert x_{1} at the root.
- Insert x_{i} down the tree by going to the left (respectively right) if x_{i} is smaller (respectively larger) than the current node value.
$\rightarrow x=(4,1,8,6,9)$

Given a sequence of distinct integers $x=\left(x_{1}, \ldots, x_{n}\right)$, the corresponding binary search tree is inductively constructed as follows:

- Insert x_{1} at the root.
- Insert x_{i} down the tree by going to the left (respectively right) if x_{i} is smaller (respectively larger) than the current node value.
$\rightarrow x=(4,1,8,6,9)$

Binary search trees have a few noteworthy properties:

Binary search trees have a few noteworthy properties:

- The can be defined on infinite sequences: $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)=\left(x_{i}\right)_{i \geq 1}$.

Properties

Binary search trees have a few noteworthy properties:

- The can be defined on infinite sequences: $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)=\left(x_{i}\right)_{i \geq 1}$.
- Their rightmost branch corresponds to the records of the sequence: $\left\{i: \forall j<i, x_{i}>x_{j}\right\}$.

Properties

Binary search trees have a few noteworthy properties:

- The can be defined on infinite sequences: $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)=\left(x_{i}\right)_{i \geq 1}$.
- Their rightmost branch corresponds to the records of the sequence: $\left\{i: \forall j<i, x_{i}>x_{j}\right\}$.
- When x is an infinite sequence of integers, it has an infinite rightmost branch.

Properties

Binary search trees have a few noteworthy properties:

- The can be defined on infinite sequences: $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)=\left(x_{i}\right)_{i \geq 1}$.
- Their rightmost branch corresponds to the records of the sequence: $\left\{i: \forall j<i, x_{i}>x_{j}\right\}$.
- When x is an infinite sequence of integers, it has an infinite rightmost branch.
$\rightarrow x=(4,1,8,6,9)$

Properties

Binary search trees have a few noteworthy properties:

- The can be defined on infinite sequences: $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)=\left(x_{i}\right)_{i \geq 1}$.
- Their rightmost branch corresponds to the records of the sequence: $\left\{i: \forall j<i, x_{i}>x_{j}\right\}$.
- When x is an infinite sequence of integers, it has an infinite rightmost branch.
$\rightarrow x=(4,1,8,6,9)$

Properties

Binary search trees have a few noteworthy properties:

- The can be defined on infinite sequences: $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)=\left(x_{i}\right)_{i \geq 1}$.
- Their rightmost branch corresponds to the records of the sequence: $\left\{i: \forall j<i, x_{i}>x_{j}\right\}$.
- When x is an infinite sequence of integers, it has an infinite rightmost branch.
$\rightarrow x=(4,1,8,6,9, \ldots)$

Properties

Binary search trees have a few noteworthy properties:

- The can be defined on infinite sequences: $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)=\left(x_{i}\right)_{i \geq 1}$.
- Their rightmost branch corresponds to the records of the sequence: $\left\{i: \forall j<i, x_{i}>x_{j}\right\}$.
- When x is an infinite sequence of integers, it has an infinite rightmost branch.
$\rightarrow x=(4,1,8,6,9, \ldots)$

Binary search trees

Mallows trees

Local limit

Redwood trees

Mallows permutations

Mallows permutations

Definition

Mallows permutations

Definition

A Mallows permutation $X_{n, q}$ with parameters $n \in \mathbb{N}$ and $q \in[0, \infty)$ with a random permutation with distribution

$$
\mathbb{P}\left(X_{n, q}=\sigma\right)=\frac{q^{\operatorname{Inv}(\sigma)}}{\prod_{k=1}^{n}\left(1+q+\ldots+q^{k-1}\right)} \propto q^{\operatorname{Inv}(\sigma)}
$$

where $\operatorname{Inv}(\sigma)=|\{i<j: \sigma(i)>\sigma(j)\}|$ is the number of inversions of σ.

Mallows permutations

Definition

A Mallows permutation $X_{n, q}$ with parameters $n \in \mathbb{N}$ and $q \in[0, \infty)$ with a random permutation with distribution

$$
\mathbb{P}\left(X_{n, q}=\sigma\right)=\frac{q^{\operatorname{Inv}(\sigma)}}{\prod_{k=1}^{n}\left(1+q+\ldots+q^{k-1}\right)} \propto q^{\operatorname{Inv}(\sigma)}
$$

where $\operatorname{Inv}(\sigma)=|\{i<j: \sigma(i)>\sigma(j)\}|$ is the number of inversions of σ.
\rightarrow For $q=1, X_{n, q}$ is a uniform permutation of size n.

Mallows permutations

Definition

A Mallows permutation $X_{n, q}$ with parameters $n \in \mathbb{N}$ and $q \in[0, \infty)$ with a random permutation with distribution

$$
\mathbb{P}\left(X_{n, q}=\sigma\right)=\frac{q^{\operatorname{Inv}(\sigma)}}{\prod_{k=1}^{n}\left(1+q+\ldots+q^{k-1}\right)} \propto q^{\operatorname{Inv}(\sigma)}
$$

where $\operatorname{Inv}(\sigma)=|\{i<j: \sigma(i)>\sigma(j)\}|$ is the number of inversions of σ.
\rightarrow For $q=1, X_{n, q}$ is a uniform permutation of size n.
\rightarrow For $q=0, X_{n, q}$ is the identity permutation.

Mallows permutations

Definition

A Mallows permutation $X_{n, q}$ with parameters $n \in \mathbb{N}$ and $q \in[0, \infty)$ with a random permutation with distribution

$$
\mathbb{P}\left(X_{n, q}=\sigma\right)=\frac{q^{\operatorname{Inv}(\sigma)}}{\prod_{k=1}^{n}\left(1+q+\ldots+q^{k-1}\right)} \propto q^{\operatorname{Inv}(\sigma)}
$$

where $\operatorname{Inv}(\sigma)=|\{i<j: \sigma(i)>\sigma(j)\}|$ is the number of inversions of σ.
\rightarrow For $q=1, X_{n, q}$ is a uniform permutation of size n.
\rightarrow For $q=0, X_{n, q}$ is the identity permutation.
\rightarrow For $q \in(0,1), X_{n, q}$ tends to be "ordered".

Mallows permutations

Definition

A Mallows permutation $X_{n, q}$ with parameters $n \in \mathbb{N}$ and $q \in[0, \infty)$ with a random permutation with distribution

$$
\mathbb{P}\left(X_{n, q}=\sigma\right)=\frac{q^{\operatorname{Inv}(\sigma)}}{\prod_{k=1}^{n}\left(1+q+\ldots+q^{k-1}\right)} \propto q^{\operatorname{Inv}(\sigma)}
$$

where $\operatorname{Inv}(\sigma)=|\{i<j: \sigma(i)>\sigma(j)\}|$ is the number of inversions of σ.
\rightarrow For $q=1, X_{n, q}$ is a uniform permutation of size n.
\rightarrow For $q=0, X_{n, q}$ is the identity permutation.
\rightarrow For $q \in(0,1), X_{n, q}$ tends to be "ordered".
\rightarrow We restrict ourselves to the case $q \in[0,1)$.

Mallows trees

Mallows trees

Q: What happens when we consider the binary search tree of a Mallows permutation $X_{n, q}$?

Mallows trees

Q: What happens when we consider the binary search tree of a Mallows permutation $X_{n, q}$?

Mallows permutation

Mallows trees

Q: What happens when we consider the binary search tree of a Mallows permutation $X_{n, q}$?

In spite of their complicated definition, Mallows trees can easily be constructed inductively:

In spite of their complicated definition, Mallows trees can easily be constructed inductively:

- The size S of the left subtree of the root is a geometric conditioned to be in $[0, n-1]$:

$$
\mathbb{P}(S=k)=\frac{q^{k}(1-q)}{1-q^{n}} .
$$

In spite of their complicated definition, Mallows trees can easily be constructed inductively:

- The size S of the left subtree of the root is a geometric conditioned to be in $[0, n-1]$:

$$
\mathbb{P}(S=k)=\frac{q^{k}(1-q)}{1-q^{n}} .
$$

- The right subtree of the root has size $n-1-S$.

In spite of their complicated definition, Mallows trees can easily be constructed inductively:

- The size S of the left subtree of the root is a geometric conditioned to be in $[0, n-1]$:

$$
\mathbb{P}(S=k)=\frac{q^{k}(1-q)}{1-q^{n}} .
$$

- The right subtree of the root has size $n-1-S$.
- Both left and right subtree are Mallows trees.

In spite of their complicated definition, Mallows trees can easily be constructed inductively:

- The size S of the left subtree of the root is a geometric conditioned to be in $[0, n-1]$:

$$
\mathbb{P}(S=k)=\frac{q^{k}(1-q)}{1-q^{n}} .
$$

- The right subtree of the root has size $n-1-S$.
- Both left and right subtree are Mallows trees.

In spite of their complicated definition, Mallows trees can easily be constructed inductively:

- The size S of the left subtree of the root is a geometric conditioned to be in $[0, n-1]$:

$$
\mathbb{P}(S=k)=\frac{q^{k}(1-q)}{1-q^{n}} .
$$

- The right subtree of the root has size $n-1-S$.
- Both left and right subtree are Mallows trees.

Construction

In spite of their complicated definition, Mallows trees can easily be constructed inductively:

- The size S of the left subtree of the root is a geometric conditioned to be in $[0, n-1]$:

$$
\mathbb{P}(S=k)=\frac{q^{k}(1-q)}{1-q^{n}} .
$$

- The right subtree of the root has size $n-1-S$.
- Both left and right subtree are Mallows trees.

Construction

In spite of their complicated definition, Mallows trees can easily be constructed inductively:

- The size S of the left subtree of the root is a geometric conditioned to be in $[0, n-1]$:

$$
\mathbb{P}(S=k)=\frac{q^{k}(1-q)}{1-q^{n}} .
$$

- The right subtree of the root has size $n-1-S$.
- Both left and right subtree are Mallows trees.

Construction (approximative)

A Mallows tree is approximately constructed as follows:

Construction (approximative)

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.
- Generate a random Mallows tree of size G with parameter q.

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.
- Generate a random Mallows tree of size G with parameter q.
- Attach it to the left of the root.

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.
- Generate a random Mallows tree of size G with parameter q.
- Attach it to the left of the root.
- Go down to the right child of the root and repeat until the tree has n nodes.

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.
- Generate a random Mallows tree of size G with parameter q.
- Attach it to the left of the root.
- Go down to the right child of the root and repeat until the tree has n nodes.

Construction (approximative)

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.
- Generate a random Mallows tree of size G with parameter q.
- Attach it to the left of the root.
- Go down to the right child of the root and repeat until the tree has n nodes.

Construction (approximative)

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.
- Generate a random Mallows tree of size G with parameter q.
- Attach it to the left of the root.
- Go down to the right child of the root and repeat until the tree has n nodes.

Construction (approximative)

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.
- Generate a random Mallows tree of size G with parameter q.
- Attach it to the left of the root.
- Go down to the right child of the root and repeat until the tree has n nodes.

Construction (approximative)

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.
- Generate a random Mallows tree of size G with parameter q.
- Attach it to the left of the root.
- Go down to the right child of the root and repeat until the tree has n nodes.

Construction (approximative)

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.
- Generate a random Mallows tree of size G with parameter q.
- Attach it to the left of the root.
- Go down to the right child of the root and repeat until the tree has n nodes.

Construction (approximative)

A Mallows tree is approximately constructed as follows:

- Generate a random geometric random variable G with $\mathbb{P}(G=k)=q^{k}(1-q)$.
- Generate a random Mallows tree of size G with parameter q.
- Attach it to the left of the root.
- Go down to the right child of the root and repeat until the tree has n nodes.

Binary search trees

Mallows trees

Local limit

Redwood trees

Guessing the local limit

Guessing the local limit

Mallows tree:

Guessing the local limit

Mallows tree:

Local limit:

Guessing the local limit

Mallows tree:

Local limit:

Guessing the local limit

Mallows tree:

Local limit:

Guessing the local limit

Mallows tree:
 Local limit:

Guessing the local limit

Mallows tree:

Local limit:

Guessing the local limit

Mallows tree:

Local limit:

Guessing the local limit

Mallows tree:

Local limit:

Local limit of a Mallows tree

Local limit of a Mallows tree

Theorem (i 2023)

Local limit of a Mallows tree

Theorem (ir 2023)
Any sequence of Mallows trees with increasing size and fixed $q \in[0,1)$ converges locally almostsurely to (o, \mathcal{T}) constructed as follows.

Local limit of a Mallows tree

Theorem (i) 2023)

Any sequence of Mallows trees with increasing size and fixed $q \in[0,1)$ converges locally almostsurely to (o, \mathcal{T}) constructed as follows.

- Let $\left(G_{i}\right)_{i \in \mathbb{Z}}$ be a sequence of independent random variables, all having the geometric distribution with parameter q, except for G_{0} being size-biased (note that $\mathbb{P}\left(G_{i}=0\right)>0$ for all $i \in \mathbb{Z}$).

Local limit of a Mallows tree

Theorem (i) 2023)

Any sequence of Mallows trees with increasing size and fixed $q \in[0,1)$ converges locally almostsurely to (o, \mathcal{T}) constructed as follows.

- Let $\left(G_{i}\right)_{i \in \mathbb{Z}}$ be a sequence of independent random variables, all having the geometric distribution with parameter q, except for G_{0} being size-biased (note that $\mathbb{P}\left(G_{i}=0\right)>0$ for all $i \in \mathbb{Z}$).
- Let $\left(T_{i}\right)_{i \in \mathbb{Z}}$ be a sequence of Mallows trees with respective parameters G_{i} and q.

Local limit of a Mallows tree

Theorem (ǐ 2023)

Any sequence of Mallows trees with increasing size and fixed $q \in[0,1)$ converges locally almostsurely to (o, \mathcal{T}) constructed as follows.

- Let $\left(G_{i}\right)_{i \in \mathbb{Z}}$ be a sequence of independent random variables, all having the geometric distribution with parameter q, except for G_{0} being size-biased (note that $\mathbb{P}\left(G_{i}=0\right)>0$ for all $i \in \mathbb{Z}$).
- Let $\left(T_{i}\right)_{i \in \mathbb{Z}}$ be a sequence of Mallows trees with respective parameters G_{i} and q.
- Set \mathcal{T} to be the infinite line on \mathbb{Z} with the root of each T_{i} attached via an edge to i.

Local limit of a Mallows tree

Theorem (ǐ 2023)

Any sequence of Mallows trees with increasing size and fixed $q \in[0,1)$ converges locally almostsurely to (o, \mathcal{T}) constructed as follows.

- Let $\left(G_{i}\right)_{i \in \mathbb{Z}}$ be a sequence of independent random variables, all having the geometric distribution with parameter q, except for G_{0} being size-biased (note that $\mathbb{P}\left(G_{i}=0\right)>0$ for all $i \in \mathbb{Z}$).
- Let $\left(T_{i}\right)_{i \in \mathbb{Z}}$ be a sequence of Mallows trees with respective parameters G_{i} and q.
- Set \mathcal{T} to be the infinite line on \mathbb{Z} with the root of each T_{i} attached via an edge to i.
- Choose o uniformly over $\{0\} \cup V\left(T_{0}\right)$.

Local limit of a Mallows tree

Local limit of a Mallows tree

Local limit of a Mallows tree

Local limit of a Mallows tree

Binary search trees

Mallows trees

Local limit

率 Redwood trees

Here is what we did so far:

Here is what we did so far:

- We took a random Mallows permutation $X_{n, q}$ of size n and parameter q.

Here is what we did so far:

- We took a random Mallows permutation $X_{n, q}$ of size n and parameter q.
- We inserted this permutation into a binary search tree structure to obtain a Mallows tree.

Here is what we did so far:

- We took a random Mallows permutation $X_{n, q}$ of size n and parameter q.
- We inserted this permutation into a binary search tree structure to obtain a Mallows tree.
- We took the local limit of this tree as $n \rightarrow \infty$.

Here is what we did so far:

- We took a random Mallows permutation $X_{n, q}$ of size n and parameter q.
- We inserted this permutation into a binary search tree structure to obtain a Mallows tree.
- We took the local limit of this tree as $n \rightarrow \infty$.
\rightarrow The local limit is composed of many sub-structures distributed as Mallows trees.

Here is what we did so far:

- We took a random Mallows permutation $X_{n, q}$ of size n and parameter q.
- We inserted this permutation into a binary search tree structure to obtain a Mallows tree.
- We took the local limit of this tree as $n \rightarrow \infty$.
\rightarrow The local limit is composed of many sub-structures distributed as Mallows trees.
\rightarrow These substructures were already present when considering finite Mallows permutations.

Here is what we did so far:

- We took a random Mallows permutation $X_{n, q}$ of size n and parameter q.
- We inserted this permutation into a binary search tree structure to obtain a Mallows tree.
- We took the local limit of this tree as $n \rightarrow \infty$.
\rightarrow The local limit is composed of many sub-structures distributed as Mallows trees.
\rightarrow These substructures were already present when considering finite Mallows permutations.

Q: Can we swap the local limit and the binary search tree structure to first construct an infinite Mallows permutation which we then insert into a binary search tree?

Here is what we did so far:

- We took a random Mallows permutation $X_{n, q}$ of size n and parameter q.
- We inserted this permutation into a binary search tree structure to obtain a Mallows tree.
- We took the local limit of this tree as $n \rightarrow \infty$.
\rightarrow The local limit is composed of many sub-structures distributed as Mallows trees.
\rightarrow These substructures were already present when considering finite Mallows permutations.

Q: Can we swap the local limit and the binary search tree structure to first construct an infinite Mallows permutation which we then insert into a binary search tree?
\rightarrow Infinite Mallows permutations are already defined, both on \mathbb{N} and \mathbb{Z} !

Here is what we did so far:

- We took a random Mallows permutation $X_{n, q}$ of size n and parameter q.
- We inserted this permutation into a binary search tree structure to obtain a Mallows tree.
- We took the local limit of this tree as $n \rightarrow \infty$.
\rightarrow The local limit is composed of many sub-structures distributed as Mallows trees.
\rightarrow These substructures were already present when considering finite Mallows permutations.

Q: Can we swap the local limit and the binary search tree structure to first construct an infinite Mallows permutation which we then insert into a binary search tree?
\rightarrow Infinite Mallows permutations are already defined, both on \mathbb{N} and \mathbb{Z} ! So we are good, right?

Here is what we did so far:

- We took a random Mallows permutation $X_{n, q}$ of size n and parameter q.
- We inserted this permutation into a binary search tree structure to obtain a Mallows tree.
- We took the local limit of this tree as $n \rightarrow \infty$.
\rightarrow The local limit is composed of many sub-structures distributed as Mallows trees.
\rightarrow These substructures were already present when considering finite Mallows permutations.

Q: Can we swap the local limit and the binary search tree structure to first construct an infinite Mallows permutation which we then insert into a binary search tree?
\rightarrow Infinite Mallows permutations are already defined, both on \mathbb{N} and \mathbb{Z} ! So we are good, right? Well, not exactly...

The problem

The natural "local limit" of a Mallows permutation in that setting is the two-sided infinite Mallows permutation, defined on \mathbb{Z}.

The natural "local limit" of a Mallows permutation in that setting is the two-sided infinite Mallows permutation, defined on \mathbb{Z}.

- Such a permutation can be seen as a two-sided sequence of distinct and signed integers.

The natural "local limit" of a Mallows permutation in that setting is the two-sided infinite Mallows permutation, defined on \mathbb{Z}.

- Such a permutation can be seen as a two-sided sequence of distinct and signed integers.
- Binary search trees are only defined on one-sided sequences of distinct integers.

The natural "local limit" of a Mallows permutation in that setting is the two-sided infinite Mallows permutation, defined on \mathbb{Z}.

- Such a permutation can be seen as a two-sided sequence of distinct and signed integers.
- Binary search trees are only defined on one-sided sequences of distinct integers.
\rightarrow We need to extend binary search trees to two-sided sequences $x=\left(\ldots, x_{-1}, x_{0}, x_{1}, \ldots\right)$.

The natural "local limit" of a Mallows permutation in that setting is the two-sided infinite Mallows permutation, defined on \mathbb{Z}.

- Such a permutation can be seen as a two-sided sequence of distinct and signed integers.
- Binary search trees are only defined on one-sided sequences of distinct integers.
\rightarrow We need to extend binary search trees to two-sided sequences $x=\left(\ldots, x_{-1}, x_{0}, x_{1}, \ldots\right)$.
\rightarrow Let us try some cases to understand how they work.

What is the tree for $x=(\ldots,-2-1,0,1,2, \ldots)$?

What is the tree for $x=(\ldots,-2-1,0,1,2, \ldots)$?

What is the tree for $x=(\ldots, 2,1,0,-1,-2, \ldots)$?

What is the tree for $x=(\ldots, 2,1,0,-1,-2, \ldots)$?

What is the tree for $x=(\ldots, 3,-2,1,0,-1,2,-3,4,-5,6, \ldots)$?

What is the tree for $x=(\ldots, 3,-2,1,0,-1,2,-3,4,-5,6, \ldots)$?

Generalizing binary search trees

Generalizing binary search trees

As we can see from the previous three examples, different types of behaviour might arise:

As we can see from the previous three examples, different types of behaviour might arise:

- Infinite rightward path (from top-left to bottom-right).

Generalizing binary search trees

As we can see from the previous three examples, different types of behaviour might arise:

- Infinite rightward path (from top-left to bottom-right).
- Infinite leftward path (from top-right to bottom-left).

Generalizing binary search trees

As we can see from the previous three examples, different types of behaviour might arise:

- Infinite rightward path (from top-left to bottom-right).
- Infinite leftward path (from top-right to bottom-left).
- Zigzagging tree.

Generalizing binary search trees

As we can see from the previous three examples, different types of behaviour might arise:

- Infinite rightward path (from top-left to bottom-right).
- Infinite leftward path (from top-right to bottom-left).
- Zigzagging tree.
\rightarrow This makes the formal definition of "general binary search trees" more difficult.

Generalizing binary search trees

As we can see from the previous three examples, different types of behaviour might arise:

- Infinite rightward path (from top-left to bottom-right).
- Infinite leftward path (from top-right to bottom-left).
- Zigzagging tree.
\rightarrow This makes the formal definition of "general binary search trees" more difficult.
Luckily for us, infinite Mallows permutations (with $q \in[0,1)$) tend to be "ordered". In particular, they can always be put in a tree with a single infinite path to the right.

Generalizing binary search trees

As we can see from the previous three examples, different types of behaviour might arise:

- Infinite rightward path (from top-left to bottom-right).
- Infinite leftward path (from top-right to bottom-left).
- Zigzagging tree.
\rightarrow This makes the formal definition of "general binary search trees" more difficult.
Luckily for us, infinite Mallows permutations (with $q \in[0,1)$) tend to be "ordered". In particular, they can always be put in a tree with a single infinite path to the right.
\rightarrow I refer to these trees as redwood trees.

Generalizing binary search trees

As we can see from the previous three examples, different types of behaviour might arise:

- Infinite rightward path (from top-left to bottom-right).
- Infinite leftward path (from top-right to bottom-left).
- Zigzagging tree.
\rightarrow This makes the formal definition of "general binary search trees" more difficult.
Luckily for us, infinite Mallows permutations (with $q \in[0,1)$) tend to be "ordered". In particular, they can always be put in a tree with a single infinite path to the right.
\rightarrow I refer to these trees as redwood trees.
\rightarrow For more details, check out the paper or come talk to me.
- Addario-Berry, L., \& Corsini, B. (2021). The height of Mallows trees. The Annals of Probability, 49(5), 2220-2271.
- Corsini, B. (2023). Limits of Mallows trees. arXiv preprint arXiv:2312.13817.
- Evans, S. N., Grübel, R., \& Wakolbinger, A. (2012). Trickle-down processes and their boundaries. Electron. J. Probab, 17(1), 1-58.
- Gnedin, A., \& Olshanski, G. (2012). The two-sided infinite extension of the Mallows model for random permutations. Advances in Applied Mathematics, 48(5), 615-639.
- Mallows, C. L. (1957). Non-null ranking models. I. Biometrika, 44(1/2), 114-130.

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 101034253 .

