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3



Construction

Local limit of Mallows trees Binary search trees Benôıt Corsini
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A Mallows permutation Xn,q with parameters n ∈ N and q ∈ [0, ∞) with a random permutation
with distribution

P(Xn,q = σ) = qInv(σ)∏n
k=1(1 + q + . . . + qk−1)

∝ qInv(σ)

where Inv(σ) = |{i < j : σ(i) > σ(j)}| is the number of inversions of σ.
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34



Mallows trees

Mallows permutation

Q: What happens when we consider the binary search tree of a Mallows permutation Xn,q?

Local limit of Mallows trees Mallows trees Benôıt Corsini
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41



Construction

In spite of their complicated definition, Mallows trees can easily be constructed inductively:
• The size S of the left subtree of the root is a geometric conditioned to be in [0, n − 1]:

P(S = k) = qk(1 − q)
1 − qn

.

• The right subtree of the root has size n − 1 − S.
• Both left and right subtree are Mallows trees.

Local limit of Mallows trees Mallows trees Benôıt Corsini
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57



Construction (approximative)

MTG1

MTG2

MTG3

≃ n(1 − q)

A Mallows tree is approximately constructed as follows:
• Generate a random geometric random variable G with P(G = k) = qk(1 − q).
• Generate a random Mallows tree of size G with parameter q.
• Attach it to the left of the root.
• Go down to the right child of the root and repeat until the tree has n nodes.

Local limit of Mallows trees Mallows trees Benôıt Corsini
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Local limit of a Mallows tree

Theorem (� 2023)
Any sequence of Mallows trees with increasing size and fixed q ∈ [0, 1) converges locally almost-
surely to (o, T ) constructed as follows.
• Let (Gi)i∈Z be a sequence of independent random variables, all having the geometric distribution

with parameter q, except for G0 being size-biased (note that P(Gi = 0) > 0 for all i ∈ Z).
• Let (Ti)i∈Z be a sequence of Mallows trees with respective parameters Gi and q.
• Set T to be the infinite line on Z with the root of each Ti attached via an edge to i.
• Choose o uniformly over {0} ∪ V (T0).
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Summary

Here is what we did so far:
• We took a random Mallows permutation Xn,q of size n and parameter q.
• We inserted this permutation into a binary search tree structure to obtain a Mallows tree.
• We took the local limit of this tree as n → ∞.

→→→→→→→→→→→→→→→→→ The local limit is composed of many sub-structures distributed as Mallows trees.
→→→→→→→→→→→→→→→→→ These substructures were already present when considering finite Mallows permutations.

Q: Can we swap the local limit and the binary search tree structure to first construct an infinite
Mallows permutation which we then insert into a binary search tree?

→→→→→→→→→→→→→→→→→ Infinite Mallows permutations are already defined, both on N and Z!
So we are good, right? Well, not exactly...

Local limit of Mallows trees Redwood trees Benôıt Corsini
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97



The problem

The natural “local limit” of a Mallows permutation in that setting is the two-sided infinite Mallows
permutation, defined on Z.
• Such a permutation can be seen as a two-sided sequence of distinct and signed integers.
• Binary search trees are only defined on one-sided sequences of distinct integers.

→→→→→→→→→→→→→→→→→ We need to extend binary search trees to two-sided sequences x = (. . . , x−1, x0, x1, . . .).
→→→→→→→→→→→→→→→→→ Let us try some cases to understand how they work.
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What is the tree for x = (. . . , −2 − 1, 0, 1, 2, . . .)?
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What is the tree for x = (. . . , 3, −2, 1, 0, −1, 2, −3, 4, −5, 6, . . .)?
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106



Examples

-5

-4

-3

-2

-1

0

1

2

3

4

What is the tree for x = (. . . , 3, −2, 1, 0, −1, 2, −3, 4, −5, 6, . . .)?

Local limit of Mallows trees Redwood trees Benôıt Corsini
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113



Generalizing binary search trees

As we can see from the previous three examples, different types of behaviour might arise:
• Infinite rightward path (from top-left to bottom-right).
• Infinite leftward path (from top-right to bottom-left).
• Zigzagging tree.

→→→→→→→→→→→→→→→→→ This makes the formal definition of “general binary search trees” more difficult.

Luckily for us, infinite Mallows permutations (with q ∈ [0, 1)) tend to be “ordered”. In particular,
they can always be put in a tree with a single infinite path to the right.

Local limit of Mallows trees Redwood trees Benôıt Corsini
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Generalizing binary search trees

As we can see from the previous three examples, different types of behaviour might arise:
• Infinite rightward path (from top-left to bottom-right).
• Infinite leftward path (from top-right to bottom-left).
• Zigzagging tree.

→→→→→→→→→→→→→→→→→ This makes the formal definition of “general binary search trees” more difficult.

Luckily for us, infinite Mallows permutations (with q ∈ [0, 1)) tend to be “ordered”. In particular,
they can always be put in a tree with a single infinite path to the right.
→→→→→→→→→→→→→→→→→ I refer to these trees as redwood trees.
→→→→→→→→→→→→→→→→→ For more details, check out the paper or come talk to me. �
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116



References

• Addario-Berry, L., & Corsini, B. (2021). The height of Mallows trees. The Annals of
Probability, 49(5), 2220-2271.

• Corsini, B. (2023). Limits of Mallows trees. arXiv preprint arXiv:2312.13817.
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117



Thank you!
Thank you!
Thank you!

Thank you!
Thank you!

Thank you!
Thank you!

Thankyou!

Thank you! Thank you!Thank you!Thank you!

Local limit of Mallows trees Thank you! Benôıt Corsini
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