


Table of Content

4 Binary search trees

42 Mallows trees

42 Local limit

42  Redwood trees

Local limit of Mallows trees Benoit Corsini



Table of Content

4 Binary search trees

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

e Insert x; at the root.

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

e Insert x; at the root.

o Insert x; down the tree by going to the left (respectively right) if x; is smaller (respectively
larger) than the current node value.

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

e Insert x; at the root.

o Insert x; down the tree by going to the left (respectively right) if x; is smaller (respectively
larger) than the current node value.

— r=1(4,1,8,6,9)

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

e Insert x; at the root.

o Insert x; down the tree by going to the left (respectively right) if x; is smaller (respectively
larger) than the current node value.

— r=1(4,1,8,6,9)

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

e Insert x; at the root.

o Insert x; down the tree by going to the left (respectively right) if x; is smaller (respectively
larger) than the current node value.

— r=1(4,1,8,6,9)

®

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

e Insert x; at the root.

o Insert x; down the tree by going to the left (respectively right) if x; is smaller (respectively
larger) than the current node value.

— r=1(4,1,8,6,9)

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

e Insert x; at the root.

o Insert x; down the tree by going to the left (respectively right) if x; is smaller (respectively
larger) than the current node value.

— r=1(4,1,8,6,9)

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

e Insert x; at the root.

o Insert x; down the tree by going to the left (respectively right) if x; is smaller (respectively
larger) than the current node value.

— r=1(4,1,8,6,9)

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

e Insert x; at the root.

o Insert x; down the tree by going to the left (respectively right) if x; is smaller (respectively
larger) than the current node value.

— r=1(4,1,8,6,9)

Local limit of Mallows trees Binary search trees Benoit Corsini



Construction

Given a sequence of distinct integers * = (x1,...,2,), the corresponding binary search tree is
inductively constructed as follows:

e Insert x; at the root.

o Insert x; down the tree by going to the left (respectively right) if x; is smaller (respectively
larger) than the current node value.

— r=1(4,1,8,6,9)

Local limit of Mallows trees Binary search trees Benoit Corsini



Properties

Local limit of Mallows trees Binary search trees Benoit Corsini



Properties

Binary search trees have a few noteworthy properties:

Local limit of Mallows trees Binary search trees Benoit Corsini



Properties

Binary search trees have a few noteworthy properties:

o The can be defined on infinite sequences: © = (1,..., %y, ...) = (2;)i>1.

Local limit of Mallows trees Binary search trees Benoit Corsini



Properties

Binary search trees have a few noteworthy properties:
o The can be defined on infinite sequences: © = (1,..., %y, ...) = (2;)i>1.

o Their rightmost branch corresponds to the records of the sequence: {i : Vj < i, z; > x,}.

Local limit of Mallows trees Binary search trees Benoit Corsini



Properties

Binary search trees have a few noteworthy properties:
o The can be defined on infinite sequences: © = (1,..., %y, ...) = (2;)i>1.
o Their rightmost branch corresponds to the records of the sequence: {i : Vj < i, z; > x,}.

e When z is an infinite sequence of integers, it has an infinite rightmost branch.

Local limit of Mallows trees Binary search trees Benoit Corsini



Properties

Binary search trees have a few noteworthy properties:
o The can be defined on infinite sequences: © = (1,..., %y, ...) = (2;)i>1.
o Their rightmost branch corresponds to the records of the sequence: {i : Vj < i, z; > x,}.

e When z is an infinite sequence of integers, it has an infinite rightmost branch.

— r=1(4,1,8,6,9)

Local limit of Mallows trees Binary search trees Benoit Corsini



Properties

Binary search trees have a few noteworthy properties:
o The can be defined on infinite sequences: © = (1,..., %y, ...) = (2;)i>1.
o Their rightmost branch corresponds to the records of the sequence: {i : Vj < i, z; > x,}.

e When z is an infinite sequence of integers, it has an infinite rightmost branch.

— r=1(4,1,8,6,9)

|

Local limit of Mallows trees Binary search trees Benoit Corsini



Properties

Binary search trees have a few noteworthy properties:
o The can be defined on infinite sequences: © = (1,..., %y, ...) = (2;)i>1.
o Their rightmost branch corresponds to the records of the sequence: {i : Vj < i, z; > x,}.

e When z is an infinite sequence of integers, it has an infinite rightmost branch.

— = (4,1,8,6,9,...)

|

Local limit of Mallows trees Binary search trees Benoit Corsini



Properties

Binary search trees have a few noteworthy properties:
o The can be defined on infinite sequences: © = (1,..., %y, ...) = (2;)i>1.
o Their rightmost branch corresponds to the records of the sequence: {i : Vj < i, z; > x,}.

e When z is an infinite sequence of integers, it has an infinite rightmost branch.

— = (4,1,8,6,9,...)

|

Local limit of Mallows trees Binary search trees Benoit Corsini



Table of Content

42 Mallows trees

Local limit of Mallows trees Mallows trees Benoit Corsini



Mallows permutations

Local limit of Mallows trees Mallows trees Benoit Corsini



Mallows permutations

( Definition

Local limit of Mallows trees Mallows trees Benoit Corsini



Mallows permutations

( Definition

A Mallows permutation X, , with parameters n € N and ¢ € [0, c0) with a random permutation
with distribution

Inv (o)

B q
[Lioi(l+qg+ ...+ ¢

where Inv(o) = [{t < 7 : (i) > o(j)}| is the number of inversions of o.

P(qu _ O') Inv(o)

X q

Local limit of Mallows trees Mallows trees Benoit Corsini



Mallows permutations

( Definition

A Mallows permutation X, , with parameters n € N and ¢ € [0, c0) with a random permutation
with distribution

Inv (o)

B q
[Lioi(l+qg+ ...+ ¢

where Inv(o) = [{t < 7 : (i) > o(j)}| is the number of inversions of o.

Inv(o)

P(X,,=0) X q

— For ¢ =1, X,,, is a uniform permutation of size n.

Local limit of Mallows trees Mallows trees Benoit Corsini



Mallows permutations

( Definition

A Mallows permutation X, , with parameters n € N and ¢ € [0, c0) with a random permutation
with distribution

Inv (o)

B q
[Lioi(l+qg+ ...+ ¢

where Inv(o) = [{t < 7 : (i) > o(j)}| is the number of inversions of o.

Inv(o)

P(X,,=0) X ¢

— For ¢ =1, X,,, is a uniform permutation of size n.

— For ¢ =0, X,,, is the identity permutation.

Local limit of Mallows trees Mallows trees Benoit Corsini



Mallows permutations

( Definition

A Mallows permutation X, , with parameters n € N and ¢ € [0, c0) with a random permutation
with distribution

Inv (o)

B q
[Lioi(l+qg+ ...+ ¢

where Inv(o) = [{t < 7 : (i) > o(j)}| is the number of inversions of o.

P(qu _ O') Inv(o)

X q

— For ¢ =1, X,,, is a uniform permutation of size n.
— For ¢ =0, X,,, is the identity permutation.
— For g € (0,1), X,,, tends to be “ordered”.

Local limit of Mallows trees Mallows trees Benoit Corsini



Mallows permutations

( Definition

A Mallows permutation X, , with parameters n € N and ¢ € [0, c0) with a random permutation
with distribution

Inv (o)

B q
[Lioi(l+qg+ ...+ ¢

where Inv(o) = [{t < 7 : (i) > o(j)}| is the number of inversions of o.

P(Xn,q _ O') Inv(o)

X q

— For ¢ =1, X,,, is a uniform permutation of size n.
— For ¢ =0, X,,, is the identity permutation.

— For g € (0,1), X,,, tends to be “ordered”.

— We restrict ourselves to the case ¢ € [0, 1).
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( Theorem (¥ 2023)

Any sequence of Mallows trees with increasing size and fixed ¢ € [0, 1) converges locally almost-
surely to (0,7T) constructed as follows.

o Let ((G;);cz be a sequence of independent random variables, all having the geometric distribution
with parameter ¢, except for GG being size-biased (note that P(G; = 0) > 0 for all 1 € Z).

o lLet (7});cz be a sequence of Mallows trees with respective parameters GG; and q.

e Set 7 to be the infinite line on Z with the root of each T; attached via an edge to 7.

e Choose o uniformly over {0} U V(Tp).
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e We inserted this permutation into a binary search tree structure to obtain a Mallows tree.

e We took the local limit of this tree as n — oc.
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The problem

The natural “local limit” of a Mallows permutation in that setting is the two-sided infinite Mallows
permutation, defined on Z.

e Such a permutation can be seen as a two-sided sequence of distinct and signed integers.

e Binary search trees are only defined on one-sided sequences of distinct integers.

—> We need to extend binary search trees to two-sided sequences x = (..., x_1,Tg, T1,- . .).

— Let us try some cases to understand how they work.
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As we can see from the previous three examples, different types of behaviour might arise:

e Infinite rightward path (from top-left to bottom-right).
e Infinite leftward path (from top-right to bottom-left).
o /Zigzagging tree.

—+ This makes the formal definition of “general binary search trees” more difficult.

Luckily for us, infinite Mallows permutations (with ¢ € [0,1)) tend to be “ordered”. In particular,
they can always be put in a tree with a single infinite path to the right.

— | refer to these trees as redwood trees.

— For more details, check out the paper or come talk to me. =
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