
Local weighted optimizations
and open problems

Benoît Corsini
with L. Addario-Berry

and J. Barrett

1

Table of contents

� Local weighted optimizations

3 Our results

� Proof idea

☼ Future work and open problem

Local weighted optimizations and open problems Benoît Corsini

2

Table of contents

� Local weighted optimizations

3 Our results

� Proof idea

☼ Future work and open problem

Local weighted optimizations and open problems Optimizations Benoît Corsini

3

Motivation

Local weighted optimizations and open problems Optimizations Benoît Corsini

4

Motivation

The fundamental question
When considering real-life networks, it is often impossible to access the whole graph at once.
So if we further want to modify the graph, this becomes even more complicated...

Assume we have a target property that we want our network to satisfy; can we operate “local”
modifications eventually leading to the global graph satisfying this property?

Local weighted optimizations and open problems Optimizations Benoît Corsini

5

Motivation

The fundamental question
When considering real-life networks, it is often impossible to access the whole graph at once.
So if we further want to modify the graph, this becomes even more complicated...

Assume we have a target property that we want our network to satisfy; can we operate “local”
modifications eventually leading to the global graph satisfying this property?

Local weighted optimizations and open problems Optimizations Benoît Corsini

6

Motivation

The fundamental question
When considering real-life networks, it is often impossible to access the whole graph at once.
So if we further want to modify the graph, this becomes even more complicated...

Assume we have a target property that we want our network to satisfy; can we operate “local”
modifications eventually leading to the global graph satisfying this property?

Local weighted optimizations and open problems Optimizations Benoît Corsini

7

Motivation

The fundamental question
When considering real-life networks, it is often impossible to access the whole graph at once.
So if we further want to modify the graph, this becomes even more complicated...

Assume we have a target property that we want our network to satisfy; can we operate “local”
modifications eventually leading to the global graph satisfying this property?

Local weighted optimizations and open problems Optimizations Benoît Corsini

8

Motivation

Source: mivolink.blogspot.com

Local weighted optimizations and open problems Optimizations Benoît Corsini

9

Motivation

Source: powertec.ca

Local weighted optimizations and open problems Optimizations Benoît Corsini

10

Out setup

Local weighted optimizations and open problems Optimizations Benoît Corsini

11

Out setup

In the case of the electrical grid, we

Local weighted optimizations and open problems Optimizations Benoît Corsini

12

Out setup

In the case of the electrical grid, we
• were operating on a 2-dimensional Euclidian plan;

Local weighted optimizations and open problems Optimizations Benoît Corsini

13

Out setup

In the case of the electrical grid, we
• were operating on a 2-dimensional Euclidian plan;
• started with a given network on this plan;

Local weighted optimizations and open problems Optimizations Benoît Corsini

14

Out setup

In the case of the electrical grid, we
• were operating on a 2-dimensional Euclidian plan;
• started with a given network on this plan;
• had a yearly budget allowing us to modify only parts of our graph; and

Local weighted optimizations and open problems Optimizations Benoît Corsini

15

Out setup

In the case of the electrical grid, we
• were operating on a 2-dimensional Euclidian plan;
• started with a given network on this plan;
• had a yearly budget allowing us to modify only parts of our graph; and
• were hoping to make it become “more robust”.

Local weighted optimizations and open problems Optimizations Benoît Corsini

16

Out setup

In the case of the electrical grid, we
• were operating on a 2-dimensional Euclidian plan;
• started with a given network on this plan;
• had a yearly budget allowing us to modify only parts of our graph; and
• were hoping to make it become “more robust”.

We adapt this example and now consider

Local weighted optimizations and open problems Optimizations Benoît Corsini

17

Out setup

In the case of the electrical grid, we
• were operating on a 2-dimensional Euclidian plan;
• started with a given network on this plan;
• had a yearly budget allowing us to modify only parts of our graph; and
• were hoping to make it become “more robust”.

We adapt this example and now consider
• nodes with iid distances;

Local weighted optimizations and open problems Optimizations Benoît Corsini

18

Out setup

In the case of the electrical grid, we
• were operating on a 2-dimensional Euclidian plan;
• started with a given network on this plan;
• had a yearly budget allowing us to modify only parts of our graph; and
• were hoping to make it become “more robust”.

We adapt this example and now consider
• nodes with iid distances;
• an arbitrary starting graph;

Local weighted optimizations and open problems Optimizations Benoît Corsini

19

Out setup

In the case of the electrical grid, we
• were operating on a 2-dimensional Euclidian plan;
• started with a given network on this plan;
• had a yearly budget allowing us to modify only parts of our graph; and
• were hoping to make it become “more robust”.

We adapt this example and now consider
• nodes with iid distances;
• an arbitrary starting graph;
• a budget corresponding to the weight of the graph; and

Local weighted optimizations and open problems Optimizations Benoît Corsini

20

Out setup

In the case of the electrical grid, we
• were operating on a 2-dimensional Euclidian plan;
• started with a given network on this plan;
• had a yearly budget allowing us to modify only parts of our graph; and
• were hoping to make it become “more robust”.

We adapt this example and now consider
• nodes with iid distances;
• an arbitrary starting graph;
• a budget corresponding to the weight of the graph; and
• the minimum spanning tree as the target graph.

Local weighted optimizations and open problems Optimizations Benoît Corsini

21

Example

Local weighted optimizations and open problems Optimizations Benoît Corsini

22

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7

Local weighted optimizations and open problems Optimizations Benoît Corsini

23

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7 H = , λ = 1

Local weighted optimizations and open problems Optimizations Benoît Corsini

24

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7 H = , λ = 1
MST

Local weighted optimizations and open problems Optimizations Benoît Corsini

25

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7 H = , λ = 1
MST

?

Local weighted optimizations and open problems Optimizations Benoît Corsini

26

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7 H = , λ = 1
MST

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

?

Local weighted optimizations and open problems Optimizations Benoît Corsini

27

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7 H = , λ = 1
MST

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.300000000000000000.1

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

?

Local weighted optimizations and open problems Optimizations Benoît Corsini

28

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7 H = , λ = 1
MST

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.300000000000000000.1

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.7 + 0.3 ≤ 1

?

Local weighted optimizations and open problems Optimizations Benoît Corsini

29

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7 H = , λ = 1
MST

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.300000000000000000.1

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.7 + 0.3 ≤ 1

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4
0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

?

Local weighted optimizations and open problems Optimizations Benoît Corsini

30

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7 H = , λ = 1
MST

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.300000000000000000.1

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.7 + 0.3 ≤ 1

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4
0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4
0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

00000000000000000.900000000000000000.200000000000000000.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4
0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1

?

Local weighted optimizations and open problems Optimizations Benoît Corsini

31

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7 H = , λ = 1
MST

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.300000000000000000.1

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.7 + 0.3 ≤ 1

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4
0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4
0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

00000000000000000.900000000000000000.200000000000000000.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4
0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1

0.2 + 0.4 + 0.3 + 0.1 ≤ 1

?

Local weighted optimizations and open problems Optimizations Benoît Corsini

32

Example

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.90.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4 0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7 H = , λ = 1
MST

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3 0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.300000000000000000.1

0.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7
0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.7 + 0.3 ≤ 1

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4
0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4
0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.3

00000000000000000.900000000000000000.200000000000000000.3

0.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.20.2

0.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.30.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4
0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1

0.2 + 0.4 + 0.3 + 0.1 ≤ 1

?

Local weighted optimizations and open problems Optimizations Benoît Corsini

33

Definition

Local weighted optimizations and open problems Optimizations Benoît Corsini

34

Definition

Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
edge weights. Let Hn be a spanning subgraph of Kn and λ > 0 be a positive number.

Local weighted optimizations and open problems Optimizations Benoît Corsini

35

Definition

Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
edge weights. Let Hn be a spanning subgraph of Kn and λ > 0 be a positive number.

For any sequence of sets S = (S1, . . . , Sk), define (Hn,0, . . . , Hn,k) as follows.

Local weighted optimizations and open problems Optimizations Benoît Corsini

36

Definition

Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
edge weights. Let Hn be a spanning subgraph of Kn and λ > 0 be a positive number.

For any sequence of sets S = (S1, . . . , Sk), define (Hn,0, . . . , Hn,k) as follows.
• Hn,0 = Hn; and

Local weighted optimizations and open problems Optimizations Benoît Corsini

37

Definition

Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
edge weights. Let Hn be a spanning subgraph of Kn and λ > 0 be a positive number.

For any sequence of sets S = (S1, . . . , Sk), define (Hn,0, . . . , Hn,k) as follows.
• Hn,0 = Hn; and
• Hn,i is obtained by replacing Hn,i−1[Si] on Hn,i−1 by its (local) minimum spanning tree.

Local weighted optimizations and open problems Optimizations Benoît Corsini

38

Definition

Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
edge weights. Let Hn be a spanning subgraph of Kn and λ > 0 be a positive number.

For any sequence of sets S = (S1, . . . , Sk), define (Hn,0, . . . , Hn,k) as follows.
• Hn,0 = Hn; and
• Hn,i is obtained by replacing Hn,i−1[Si] on Hn,i−1 by its (local) minimum spanning tree.

Definition (Optimization)
Say that S = (S1, . . . , Sk) is an optimization with respect to (Hn, λ) if
• Hn,k is the (global) minimum spanning tree of Kn; and
• for any i, the weight of Hn,i−1[Si] is less than λ.

Local weighted optimizations and open problems Optimizations Benoît Corsini

39

Definition

Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
edge weights. Let Hn be a spanning subgraph of Kn and λ > 0 be a positive number.

For any sequence of sets S = (S1, . . . , Sk), define (Hn,0, . . . , Hn,k) as follows.
• Hn,0 = Hn; and
• Hn,i is obtained by replacing Hn,i−1[Si] on Hn,i−1 by its (local) minimum spanning tree.

Definition (Optimization)
Say that S = (S1, . . . , Sk) is an optimization with respect to (Hn, λ) if
• Hn,k is the (global) minimum spanning tree of Kn; and
• for any i, the weight of Hn,i−1[Si] is less than λ.

Local weighted optimizations and open problems Optimizations Benoît Corsini

40

Definition

Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
edge weights. Let Hn be a spanning subgraph of Kn and λ > 0 be a positive number.

For any sequence of sets S = (S1, . . . , Sk), define (Hn,0, . . . , Hn,k) as follows.
• Hn,0 = Hn; and
• Hn,i is obtained by replacing Hn,i−1[Si] on Hn,i−1 by its (local) minimum spanning tree.

Definition (Optimization)
Say that S = (S1, . . . , Sk) is an optimization with respect to (Hn, λ) if
• Hn,k is the (global) minimum spanning tree of Kn; and
• for any i, the weight of Hn,i−1[Si] is less than λ.

Local weighted optimizations and open problems Optimizations Benoît Corsini

41

Definition

Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
edge weights. Let Hn be a spanning subgraph of Kn and λ > 0 be a positive number.

For any sequence of sets S = (S1, . . . , Sk), define (Hn,0, . . . , Hn,k) as follows.
• Hn,0 = Hn; and
• Hn,i is obtained by replacing Hn,i−1[Si] on Hn,i−1 by its (local) minimum spanning tree.

Definition (Optimization)
Say that S = (S1, . . . , Sk) is an optimization with respect to (Hn, λ) if
• Hn,k is the (global) minimum spanning tree of Kn; and
• for any i, the weight of Hn,i−1[Si] is less than λ.

Local weighted optimizations and open problems Optimizations Benoît Corsini

42

Properties

Local weighted optimizations and open problems Optimizations Benoît Corsini

43

Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.

Local weighted optimizations and open problems Optimizations Benoît Corsini

44

Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).

Local weighted optimizations and open problems Optimizations Benoît Corsini

45

Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.

Local weighted optimizations and open problems Optimizations Benoît Corsini

46

Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).

Local weighted optimizations and open problems Optimizations Benoît Corsini

47

Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).
• Given Kn and Hn, there exists a threshold λthr = λthr(Hn;Kn) such that

Local weighted optimizations and open problems Optimizations Benoît Corsini

48

Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).
• Given Kn and Hn, there exists a threshold λthr = λthr(Hn;Kn) such that

◦ if λ < λthr, then there exists no optimization with respect to (Hn, λ); and

Local weighted optimizations and open problems Optimizations Benoît Corsini

49

Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).
• Given Kn and Hn, there exists a threshold λthr = λthr(Hn;Kn) such that

◦ if λ < λthr, then there exists no optimization with respect to (Hn, λ); and
◦ if λ > λthr, then there exists an optimization with respect to (Hn, λ).

Local weighted optimizations and open problems Optimizations Benoît Corsini

50

Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).
• Given Kn and Hn, there exists a threshold λthr = λthr(Hn;Kn) such that

◦ if λ < λthr, then there exists no optimization with respect to (Hn, λ); and
◦ if λ > λthr, then there exists an optimization with respect to (Hn, λ).

• It is easy to check that λthr is larger than the heaviest edge in Hn not in the (global) minimum
spanning tree and smaller than the total weight of Hn.

Local weighted optimizations and open problems Optimizations Benoît Corsini

51

Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).
• Given Kn and Hn, there exists a threshold λthr = λthr(Hn;Kn) such that

◦ if λ < λthr, then there exists no optimization with respect to (Hn, λ); and
◦ if λ > λthr, then there exists an optimization with respect to (Hn, λ).

• It is easy to check that λthr is larger than the heaviest edge in Hn not in the (global) minimum
spanning tree and smaller than the total weight of Hn.

→→→→→→→→→→→→→→→→→ We hope to characterize λthr when n is large for various choices of Hn.

Local weighted optimizations and open problems Optimizations Benoît Corsini

52

Table of contents

� Local weighted optimizations

3 Our results

� Proof idea

☼ Future work and open problem

Local weighted optimizations and open problems Results Benoît Corsini

53

The ONE result

Local weighted optimizations and open problems Results Benoît Corsini

54

The ONE result

Theorem (Addario-Berry, Barrett, � [2022])
Let Kn = (Kn,U) be the complete weighted graph with independent uniform edge weights, Hn be
a spanning subgraph of Kn chosen independently of U, and ε > 0.

Then, with high probability as n goes to infinity:
• there exists an optimization with respect to (Hn, 1 + ε) ; and
• there does not exist any optimization with respect to (Hn, 1 − ε).

Local weighted optimizations and open problems Results Benoît Corsini

55

The ONE result

Theorem (Addario-Berry, Barrett, � [2022])
Let Kn = (Kn,U) be the complete weighted graph with independent uniform edge weights, Hn be
a spanning subgraph of Kn chosen independently of U, and ε > 0.

Then, with high probability as n goes to infinity:
• there exists an optimization with respect to (Hn, 1 + ε) ; and
• there does not exist any optimization with respect to (Hn, 1 − ε).

Local weighted optimizations and open problems Results Benoît Corsini

56

The ONE result

Theorem (Addario-Berry, Barrett, � [2022])
Let Kn = (Kn,U) be the complete weighted graph with independent uniform edge weights, Hn be
a spanning subgraph of Kn chosen independently of U, and ε > 0.

Then, with high probability as n goes to infinity:
• there exists an optimization with respect to (Hn, 1 + ε) ; and
• there does not exist any optimization with respect to (Hn, 1 − ε).

Local weighted optimizations and open problems Results Benoît Corsini

57

The ONE result

Theorem (Addario-Berry, Barrett, � [2022])
Let Kn = (Kn,U) be the complete weighted graph with independent uniform edge weights, Hn be
a spanning subgraph of Kn chosen independently of U, and ε > 0.

Then, with high probability as n goes to infinity:
• there exists an optimization with respect to (Hn, 1 + ε) ; and
• there does not exist any optimization with respect to (Hn, 1 − ε).

Local weighted optimizations and open problems Results Benoît Corsini

58

The ONE result

Theorem (Addario-Berry, Barrett, � [2022])
Let Kn = (Kn,U) be the complete weighted graph with independent uniform edge weights, Hn be
a spanning subgraph of Kn chosen independently of U, and ε > 0.

Then, with high probability as n goes to infinity:
• there exists an optimization with respect to (Hn, 1 + ε) ; and
• there does not exist any optimization with respect to (Hn, 1 − ε).

Local weighted optimizations and open problems Results Benoît Corsini

59

The ONE result

Theorem (Addario-Berry, Barrett, � [2022])
Let Kn = (Kn,U) be the complete weighted graph with independent uniform edge weights, Hn be
a spanning subgraph of Kn chosen independently of U, and ε > 0.

Then, with high probability as n goes to infinity:
• there exists an optimization with respect to (Hn, 1 + ε) ; and
• there does not exist any optimization with respect to (Hn, 1 − ε).

→→→→→→→→→→→→→→→→→ There is a universal threshold at 1, no matter the structure (or density) of Hn.

Local weighted optimizations and open problems Results Benoît Corsini

60

Table of contents

� Local weighted optimizations

3 Our results

� Proof idea

☼ Future work and open problem

Local weighted optimizations and open problems Proof idea Benoît Corsini

61

Lower bound

Local weighted optimizations and open problems Proof idea Benoît Corsini

62

Lower bound

The lower bound is actually straightforward to check.

Local weighted optimizations and open problems Proof idea Benoît Corsini

63

Lower bound

The lower bound is actually straightforward to check.
• Since Hn is chosen independently of U, it has an edge e with weight 1 − oP(1) ≥ 1 − ϵ.

Local weighted optimizations and open problems Proof idea Benoît Corsini

64

Lower bound

The lower bound is actually straightforward to check.
• Since Hn is chosen independently of U, it has an edge e with weight 1 − oP(1) ≥ 1 − ϵ.
• This edge is likely not in the (global) MST.

Local weighted optimizations and open problems Proof idea Benoît Corsini

65

Lower bound

The lower bound is actually straightforward to check.
• Since Hn is chosen independently of U, it has an edge e with weight 1 − oP(1) ≥ 1 − ϵ.
• This edge is likely not in the (global) MST.
• If none of the sets contain both ends of e, then e belongs to the final graph.

Local weighted optimizations and open problems Proof idea Benoît Corsini

66

Lower bound

The lower bound is actually straightforward to check.
• Since Hn is chosen independently of U, it has an edge e with weight 1 − oP(1) ≥ 1 − ϵ.
• This edge is likely not in the (global) MST.
• If none of the sets contain both ends of e, then e belongs to the final graph.
• Otherwise, the first subgraph containing e has weight at least 1 − ϵ.

Local weighted optimizations and open problems Proof idea Benoît Corsini

67

Lower bound

The lower bound is actually straightforward to check.
• Since Hn is chosen independently of U, it has an edge e with weight 1 − oP(1) ≥ 1 − ϵ.
• This edge is likely not in the (global) MST.
• If none of the sets contain both ends of e, then e belongs to the final graph.
• Otherwise, the first subgraph containing e has weight at least 1 − ϵ.

→→→→→→→→→→→→→→→→→ There does not exist an optimization with respect to (Hn, 1 − ϵ).

Local weighted optimizations and open problems Proof idea Benoît Corsini

68

Lower bound

The lower bound is actually straightforward to check.
• Since Hn is chosen independently of U, it has an edge e with weight 1 − oP(1) ≥ 1 − ϵ.
• This edge is likely not in the (global) MST.
• If none of the sets contain both ends of e, then e belongs to the final graph.
• Otherwise, the first subgraph containing e has weight at least 1 − ϵ.

→→→→→→→→→→→→→→→→→ There does not exist an optimization with respect to (Hn, 1 − ϵ).

I now focus on the upper bound, more technical, but more constructive.

Local weighted optimizations and open problems Proof idea Benoît Corsini

69

Lower bound

The lower bound is actually straightforward to check.
• Since Hn is chosen independently of U, it has an edge e with weight 1 − oP(1) ≥ 1 − ϵ.
• This edge is likely not in the (global) MST.
• If none of the sets contain both ends of e, then e belongs to the final graph.
• Otherwise, the first subgraph containing e has weight at least 1 − ϵ.

→→→→→→→→→→→→→→→→→ There does not exist an optimization with respect to (Hn, 1 − ϵ).

I now focus on the upper bound, more technical, but more constructive.
→→→→→→→→→→→→→→→→→ Given a graph Hn, can we find a sequence of sets transforming Hn into the (global) MST?

Local weighted optimizations and open problems Proof idea Benoît Corsini

70

Lower bound

The lower bound is actually straightforward to check.
• Since Hn is chosen independently of U, it has an edge e with weight 1 − oP(1) ≥ 1 − ϵ.
• This edge is likely not in the (global) MST.
• If none of the sets contain both ends of e, then e belongs to the final graph.
• Otherwise, the first subgraph containing e has weight at least 1 − ϵ.

→→→→→→→→→→→→→→→→→ There does not exist an optimization with respect to (Hn, 1 − ϵ).

I now focus on the upper bound, more technical, but more constructive.
→→→→→→→→→→→→→→→→→ Given a graph Hn, can we find a sequence of sets transforming Hn into the (global) MST?
→→→→→→→→→→→→→→→→→ Can we show that the maximal weight of these sets is not too large (i.e. ≤ 1 + ϵ)?

Local weighted optimizations and open problems Proof idea Benoît Corsini

71

Upper bound proof structure

Local weighted optimizations and open problems Proof idea Benoît Corsini

72

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.

Local weighted optimizations and open problems Proof idea Benoît Corsini

73

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
• The “eating algorithm”, a method for locally growing MST.

Local weighted optimizations and open problems Proof idea Benoît Corsini

74

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
• The “eating algorithm”, a method for locally growing MST.
• A Ramsey-like argument to reduce the study from any Hn to only three cases.

Local weighted optimizations and open problems Proof idea Benoît Corsini

75

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
• The “eating algorithm”, a method for locally growing MST.
• A Ramsey-like argument to reduce the study from any Hn to only three cases.
• A case-by-case proof for these three cases.

Local weighted optimizations and open problems Proof idea Benoît Corsini

76

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
• The “eating algorithm”, a method for locally growing MST.
• A Ramsey-like argument to reduce the study from any Hn to only three cases.
• A case-by-case proof for these three cases.

→→→→→→→→→→→→→→→→→ The last argument is the most complex and detail-oriented.

Local weighted optimizations and open problems Proof idea Benoît Corsini

77

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
• The “eating algorithm”, a method for locally growing MST.
• A Ramsey-like argument to reduce the study from any Hn to only three cases.
• A case-by-case proof for these three cases.

→→→→→→→→→→→→→→→→→ The last argument is the most complex and detail-oriented.
→→→→→→→→→→→→→→→→→ I will only explain the first two points.

Local weighted optimizations and open problems Proof idea Benoît Corsini

78

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
• The “eating algorithm”, a method for locally growing MST.
• A Ramsey-like argument to reduce the study from any Hn to only three cases.
• A case-by-case proof for these three cases.

→→→→→→→→→→→→→→→→→ The last argument is the most complex and detail-oriented.
→→→→→→→→→→→→→→→→→ I will only explain the first two points.

◦ For simplicity, I now drop the subscript n on Hn.

Local weighted optimizations and open problems Proof idea Benoît Corsini

79

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
• The “eating algorithm”, a method for locally growing MST.
• A Ramsey-like argument to reduce the study from any Hn to only three cases.
• A case-by-case proof for these three cases.

→→→→→→→→→→→→→→→→→ The last argument is the most complex and detail-oriented.
→→→→→→→→→→→→→→→→→ I will only explain the first two points.

◦ For simplicity, I now drop the subscript n on Hn.
◦ I will keep assuming that things are “large enough”.

Local weighted optimizations and open problems Proof idea Benoît Corsini

80

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
• The “eating algorithm”, a method for locally growing MST.
• A Ramsey-like argument to reduce the study from any Hn to only three cases.
• A case-by-case proof for these three cases.

→→→→→→→→→→→→→→→→→ The last argument is the most complex and detail-oriented.
→→→→→→→→→→→→→→→→→ I will only explain the first two points.

◦ For simplicity, I now drop the subscript n on Hn.
◦ I will keep assuming that things are “large enough”.
◦ Every pair of nodes has an independent uniform weight, even those not part of H.

Local weighted optimizations and open problems Proof idea Benoît Corsini

81

The eating algorithm

Local weighted optimizations and open problems Proof idea Benoît Corsini

82

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.

Local weighted optimizations and open problems Proof idea Benoît Corsini

83

The eating algorithm

H

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.

Local weighted optimizations and open problems Proof idea Benoît Corsini

84

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.

Local weighted optimizations and open problems Proof idea Benoît Corsini

85

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?

Local weighted optimizations and open problems Proof idea Benoît Corsini

86

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?

Local weighted optimizations and open problems Proof idea Benoît Corsini

87

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?

Local weighted optimizations and open problems Proof idea Benoît Corsini

88

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?

Local weighted optimizations and open problems Proof idea Benoît Corsini

89

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?

Local weighted optimizations and open problems Proof idea Benoît Corsini

90

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?

Local weighted optimizations and open problems Proof idea Benoît Corsini

91

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?
→→→→→→→→→→→→→→→→→ If we have a MST on n − 1 nodes, can we extend it to n nodes?

Local weighted optimizations and open problems Proof idea Benoît Corsini

92

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?
→→→→→→→→→→→→→→→→→ If we have a MST on n − 1 nodes, can we extend it to n nodes?

Useful facts about the MST on Kn:

Local weighted optimizations and open problems Proof idea Benoît Corsini

93

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?
→→→→→→→→→→→→→→→→→ If we have a MST on n − 1 nodes, can we extend it to n nodes?

Useful facts about the MST on Kn:
• Its total weight is ζ(3) + oP(1). (F’85)

Local weighted optimizations and open problems Proof idea Benoît Corsini

94

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?
→→→→→→→→→→→→→→→→→ If we have a MST on n − 1 nodes, can we extend it to n nodes?

Useful facts about the MST on Kn:
• Its total weight is ζ(3) + oP(1). (F’85)
• Its edges have weight OP(log n/n). (ABBC’22)

Local weighted optimizations and open problems Proof idea Benoît Corsini

95

The eating algorithm

H

MST

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?
→→→→→→→→→→→→→→→→→ If we have a MST on n − 1 nodes, can we extend it to n nodes?

Useful facts about the MST on Kn:
• Its total weight is ζ(3) + oP(1). (F’85)
• Its edges have weight OP(log n/n). (ABBC’22)
• Its diameter is ΘP(n1/3). (ABBR’06)

Local weighted optimizations and open problems Proof idea Benoît Corsini

96

The eating algorithm (easy case)

Local weighted optimizations and open problems Proof idea Benoît Corsini

97

The eating algorithm (easy case)

Consider the following (easier) scenario.

Local weighted optimizations and open problems Proof idea Benoît Corsini

98

The eating algorithm (easy case)

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.

Local weighted optimizations and open problems Proof idea Benoît Corsini

99

The eating algorithm (easy case)

n

e

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

Local weighted optimizations and open problems Proof idea Benoît Corsini

100

The eating algorithm (easy case)

n

e

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.

Local weighted optimizations and open problems Proof idea Benoît Corsini

101

The eating algorithm (easy case)

n

e

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is Ue + ζ(3) ≤ 1 + ζ(3).

Local weighted optimizations and open problems Proof idea Benoît Corsini

102

The eating algorithm (easy case)

n

e

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is Ue + ζ(3) ≤ 1 + ζ(3).
→→→→→→→→→→→→→→→→→ We need to do better!

Local weighted optimizations and open problems Proof idea Benoît Corsini

103

The eating algorithm (easy case)

n

e

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is Ue + ζ(3) ≤ 1 + ζ(3).
→→→→→→→→→→→→→→→→→ We need to do better!

Instead we consider the paths from n to 1, 2, . . . , n − 1.

Local weighted optimizations and open problems Proof idea Benoît Corsini

104

The eating algorithm (easy case)

n

e

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is Ue + ζ(3) ≤ 1 + ζ(3).
→→→→→→→→→→→→→→→→→ We need to do better!

Instead we consider the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ The weight of a path in the MST is oP(1).

Local weighted optimizations and open problems Proof idea Benoît Corsini

105

The eating algorithm (easy case)

n

e

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is Ue + ζ(3) ≤ 1 + ζ(3).
→→→→→→→→→→→→→→→→→ We need to do better!

Instead we consider the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ The weight of a path in the MST is oP(1).
→→→→→→→→→→→→→→→→→ The path from n to i has weight Ue + oP(1) ≤ 1 + ϵ.

Local weighted optimizations and open problems Proof idea Benoît Corsini

106

The eating algorithm (easy case)

n

e

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is Ue + ζ(3) ≤ 1 + ζ(3).
→→→→→→→→→→→→→→→→→ We need to do better!

Instead we consider the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ The weight of a path in the MST is oP(1).
→→→→→→→→→→→→→→→→→ The path from n to i has weight Ue + oP(1) ≤ 1 + ϵ.
→→→→→→→→→→→→→→→→→ After considering all such paths, we have the (global) MST.

Local weighted optimizations and open problems Proof idea Benoît Corsini

107

The eating algorithm (easy case)

n

e

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is Ue + ζ(3) ≤ 1 + ζ(3).
→→→→→→→→→→→→→→→→→ We need to do better!

Instead we consider the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ The weight of a path in the MST is oP(1).
→→→→→→→→→→→→→→→→→ The path from n to i has weight Ue + oP(1) ≤ 1 + ϵ.
→→→→→→→→→→→→→→→→→ After considering all such paths, we have the (global) MST.

� Where is the problem?

Local weighted optimizations and open problems Proof idea Benoît Corsini

108

The eating algorithm (easy case)

n

e

MST

Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is Ue + ζ(3) ≤ 1 + ζ(3).
→→→→→→→→→→→→→→→→→ We need to do better!

Instead we consider the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ The weight of a path in the MST is oP(1).
→→→→→→→→→→→→→→→→→ The path from n to i has weight Ue + oP(1) ≤ 1 + ϵ.
→→→→→→→→→→→→→→→→→ After considering all such paths, we have the (global) MST.

� Where is the problem? The weight of the paths might change during the process!

Local weighted optimizations and open problems Proof idea Benoît Corsini

109

The eating algorithm (hard case)

Local weighted optimizations and open problems Proof idea Benoît Corsini

110

The eating algorithm (hard case)

Consider now the following (harder) scenario.

Local weighted optimizations and open problems Proof idea Benoît Corsini

111

The eating algorithm (hard case)

MST

Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.

Local weighted optimizations and open problems Proof idea Benoît Corsini

112

The eating algorithm (hard case)

n

MST

Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

Local weighted optimizations and open problems Proof idea Benoît Corsini

113

The eating algorithm (hard case)

n

MST

Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.

Local weighted optimizations and open problems Proof idea Benoît Corsini

114

The eating algorithm (hard case)

n

MST

Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is ≤ deg(n) + ζ(3).

Local weighted optimizations and open problems Proof idea Benoît Corsini

115

The eating algorithm (hard case)

n

MST

Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is ≤ deg(n) + ζ(3).
→→→→→→→→→→→→→→→→→ This is not even bounded anymore!

Local weighted optimizations and open problems Proof idea Benoît Corsini

116

The eating algorithm (hard case)

n

MST

Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is ≤ deg(n) + ζ(3).
→→→→→→→→→→→→→→→→→ This is not even bounded anymore!

We consider again the paths from n to 1, 2, . . . , n − 1.

Local weighted optimizations and open problems Proof idea Benoît Corsini

117

The eating algorithm (hard case)

n

MST

Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is ≤ deg(n) + ζ(3).
→→→→→→→→→→→→→→→→→ This is not even bounded anymore!

We consider again the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ They are not unique, so we need to choose carefully.

Local weighted optimizations and open problems Proof idea Benoît Corsini

118

The eating algorithm (hard case)

n

MST

Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is ≤ deg(n) + ζ(3).
→→→→→→→→→→→→→→→→→ This is not even bounded anymore!

We consider again the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ They are not unique, so we need to choose carefully.
→→→→→→→→→→→→→→→→→ After considering the paths, we have a supergraph of the MST.

Local weighted optimizations and open problems Proof idea Benoît Corsini

119

The eating algorithm (hard case)

n

MST

Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is ≤ deg(n) + ζ(3).
→→→→→→→→→→→→→→→→→ This is not even bounded anymore!

We consider again the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ They are not unique, so we need to choose carefully.
→→→→→→→→→→→→→→→→→ After considering the paths, we have a supergraph of the MST.
→→→→→→→→→→→→→→→→→ We remove extra edges by considering cycles (carefully again).

Local weighted optimizations and open problems Proof idea Benoît Corsini

120

The eating algorithm (hard case)

n

MST

Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is ≤ deg(n) + ζ(3).
→→→→→→→→→→→→→→→→→ This is not even bounded anymore!

We consider again the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ They are not unique, so we need to choose carefully.
→→→→→→→→→→→→→→→→→ After considering the paths, we have a supergraph of the MST.
→→→→→→→→→→→→→→→→→ We remove extra edges by considering cycles (carefully again).
→→→→→→→→→→→→→→→→→ Luckily, we obtain steps with weight 1 + oP(1) again.

Local weighted optimizations and open problems Proof idea Benoît Corsini

121

The three main cases

Local weighted optimizations and open problems Proof idea Benoît Corsini

122

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

Local weighted optimizations and open problems Proof idea Benoît Corsini

123

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities:

Local weighted optimizations and open problems Proof idea Benoît Corsini

124

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.

Local weighted optimizations and open problems Proof idea Benoît Corsini

125

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;

Local weighted optimizations and open problems Proof idea Benoît Corsini

126

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.

Local weighted optimizations and open problems Proof idea Benoît Corsini

127

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.
• if it has a large degree, then the neighbours of this high degree either have:

Local weighted optimizations and open problems Proof idea Benoît Corsini

128

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.
• if it has a large degree, then the neighbours of this high degree either have:

◦ a large clique, thus creating a large (induced) complete graph, or

Local weighted optimizations and open problems Proof idea Benoît Corsini

129

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.
• if it has a large degree, then the neighbours of this high degree either have:

◦ a large clique, thus creating a large (induced) complete graph, or
◦ a large independent set, thus creating a large (induced) star.

Local weighted optimizations and open problems Proof idea Benoît Corsini

130

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.
• if it has a large degree, then the neighbours of this high degree either have:

◦ a large clique, thus creating a large (induced) complete graph, or
◦ a large independent set, thus creating a large (induced) star.

Thus, if we can transform a large complete graph, star, and line into their MST by only changing
subgraphs of weight 1 + oP(1), then we can do the same for any graph.

Local weighted optimizations and open problems Proof idea Benoît Corsini

131

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.
• if it has a large degree, then the neighbours of this high degree either have:

◦ a large clique, thus creating a large (induced) complete graph, or
◦ a large independent set, thus creating a large (induced) star.

Thus, if we can transform a large complete graph, star, and line into their MST by only changing
subgraphs of weight 1 + oP(1), then we can do the same for any graph.

� We need to be careful on the dependency with the edge weights U.

Local weighted optimizations and open problems Proof idea Benoît Corsini

132

Concluding the proof

Local weighted optimizations and open problems Proof idea Benoît Corsini

133

Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).

Local weighted optimizations and open problems Proof idea Benoît Corsini

134

Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
• This allows us to consider only three different cases: the complete graph, a star, or a line.

Local weighted optimizations and open problems Proof idea Benoît Corsini

135

Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
• This allows us to consider only three different cases: the complete graph, a star, or a line.

→→→→→→→→→→→→→→→→→ To conclude the proof, we construct sequences of sets on those three cases.

Local weighted optimizations and open problems Proof idea Benoît Corsini

136

Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
• This allows us to consider only three different cases: the complete graph, a star, or a line.

→→→→→→→→→→→→→→→→→ To conclude the proof, we construct sequences of sets on those three cases.
◦ For the complete graph and the star, it is quite easy, since all nodes are close to each other.

Local weighted optimizations and open problems Proof idea Benoît Corsini

137

Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
• This allows us to consider only three different cases: the complete graph, a star, or a line.

→→→→→→→→→→→→→→→→→ To conclude the proof, we construct sequences of sets on those three cases.
◦ For the complete graph and the star, it is quite easy, since all nodes are close to each other.
◦ The line is more complicated, since we have to start with a large subline of small weights,

but then the corresponding MST is not independent of the weights.

Local weighted optimizations and open problems Proof idea Benoît Corsini

138

Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
• This allows us to consider only three different cases: the complete graph, a star, or a line.

→→→→→→→→→→→→→→→→→ To conclude the proof, we construct sequences of sets on those three cases.
◦ For the complete graph and the star, it is quite easy, since all nodes are close to each other.
◦ The line is more complicated, since we have to start with a large subline of small weights,

but then the corresponding MST is not independent of the weights.
→ In that case, the eating algorithm still works, but the proof is more tedious.

Local weighted optimizations and open problems Proof idea Benoît Corsini

139

Table of contents

� Local weighted optimizations

3 Our results

� Proof idea

☼ Future work and open problem

Local weighted optimizations and open problems Future work Benoît Corsini

140

Future work

Local weighted optimizations and open problems Future work Benoît Corsini

141

Future work

Some future directions:

Local weighted optimizations and open problems Future work Benoît Corsini

142

Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value?

Local weighted optimizations and open problems Future work Benoît Corsini

143

Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

Local weighted optimizations and open problems Future work Benoît Corsini

144

Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as

Local weighted optimizations and open problems Future work Benoît Corsini

145

Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm?

Local weighted optimizations and open problems Future work Benoît Corsini

146

Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm? . �

Local weighted optimizations and open problems Future work Benoît Corsini

147

Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm? . �

◦ The size of a one-step change, instead of the weight?

Local weighted optimizations and open problems Future work Benoît Corsini

148

Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm? . �

◦ The size of a one-step change, instead of the weight? . �

Local weighted optimizations and open problems Future work Benoît Corsini

149

Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm? . �

◦ The size of a one-step change, instead of the weight? . �

• Our theorem proves the existence of a specific optimization with respect to (Hn, λ). What
happens now if we consider a random sequence S = (S1, . . . , Sk)? If we keep generating new
subsets for as long as we want, do we eventually reach the minimum spanning tree?

Local weighted optimizations and open problems Future work Benoît Corsini

150

Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm? . �

◦ The size of a one-step change, instead of the weight? . �

• Our theorem proves the existence of a specific optimization with respect to (Hn, λ). What
happens now if we consider a random sequence S = (S1, . . . , Sk)? If we keep generating new
subsets for as long as we want, do we eventually reach the minimum spanning tree? �

Local weighted optimizations and open problems Future work Benoît Corsini

151

Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm? . �

◦ The size of a one-step change, instead of the weight? . �

• Our theorem proves the existence of a specific optimization with respect to (Hn, λ). What
happens now if we consider a random sequence S = (S1, . . . , Sk)? If we keep generating new
subsets for as long as we want, do we eventually reach the minimum spanning tree? �

→→→→→→→→→→→→→→→→→ Let me focus on the first question, in particular the reason why it is � and not �.

Local weighted optimizations and open problems Future work Benoît Corsini

152

Open problem

Local weighted optimizations and open problems Future work Benoît Corsini

153

Open problem

From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].

Local weighted optimizations and open problems Future work Benoît Corsini

154

Open problem

From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
For a partition (S1, . . . , Sk) ∈ Pn, we refer to k as its size and maxj{

∑
i∈Sj

Ui} as its weight.

Local weighted optimizations and open problems Future work Benoît Corsini

155

Open problem

From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
For a partition (S1, . . . , Sk) ∈ Pn, we refer to k as its size and maxj{

∑
i∈Sj

Ui} as its weight.

Pre-question
What is (asymptotically) the minimal size of a partition of weight at most 1?

Local weighted optimizations and open problems Future work Benoît Corsini

156

Open problem

From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
For a partition (S1, . . . , Sk) ∈ Pn, we refer to k as its size and maxj{

∑
i∈Sj

Ui} as its weight.

Pre-question
What is (asymptotically) the minimal size of a partition of weight at most 1?

Local weighted optimizations and open problems Future work Benoît Corsini

157

Open problem

From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
For a partition (S1, . . . , Sk) ∈ Pn, we refer to k as its size and maxj{

∑
i∈Sj

Ui} as its weight.

Pre-question
What is (asymptotically) the minimal size of a partition of weight at most 1?

It is actually not too hard to prove that this should be of order n/2: we can almost exactly pair the
uniforms U1, . . . , Un so that the sum of each pair is less than 1.

Local weighted optimizations and open problems Future work Benoît Corsini

158

Open problem

From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
For a partition (S1, . . . , Sk) ∈ Pn, we refer to k as its size and maxj{

∑
i∈Sj

Ui} as its weight.

Pre-question
What is (asymptotically) the minimal size of a partition of weight at most 1?

It is actually not too hard to prove that this should be of order n/2: we can almost exactly pair the
uniforms U1, . . . , Un so that the sum of each pair is less than 1.

→→→→→→→→→→→→→→→→→ We are now interested in the behaviour of the size when we put more constraints on the
partition.

Local weighted optimizations and open problems Future work Benoît Corsini

159

Open problem

Local weighted optimizations and open problems Future work Benoît Corsini

160

Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

Local weighted optimizations and open problems Future work Benoît Corsini

161

Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.

Local weighted optimizations and open problems Future work Benoît Corsini

162

Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.

Local weighted optimizations and open problems Future work Benoît Corsini

163

Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.

Local weighted optimizations and open problems Future work Benoît Corsini

164

Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

165

Open problem

U1 U2 U3 U4 U5 U6 U7 U8 U9

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

166

Open problem

U1 U2 U3 U4 U5 U6 U7 U8 U9
S1 = {3, 4}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

167

Open problem

U3 U4U1 U2 U5 U6 U7 U8 U9
S1 = {3, 4}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

168

Open problem

U1 U2 U5 U6 U7 U8 U9
S1 = {3, 4}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

169

Open problem

U1 U2 U5 U6 U7 U8 U9
S1 = {3, 4}
S2 = {2, 5}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

170

Open problem

U2 U5U1 U6 U7 U8 U9
S1 = {3, 4}
S2 = {2, 5}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

171

Open problem

U1 U6 U7 U8 U9
S1 = {3, 4}
S2 = {2, 5}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

172

Open problem

U1 U6 U7 U8 U9
S1 = {3, 4}
S2 = {2, 5}
S3 = {7, 8}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

173

Open problem

U7 U8U1 U6 U9
S1 = {3, 4}
S2 = {2, 5}
S3 = {7, 8}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

174

Open problem

U1 U6 U9
S1 = {3, 4}
S2 = {2, 5}
S3 = {7, 8}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

175

Open problem

U1 U6 U9
S1 = {3, 4}
S2 = {2, 5}
S3 = {7, 8}
S4 = {1, 6, 9}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

176

Open problem

S1 = {3, 4}
S2 = {2, 5}
S3 = {7, 8}
S4 = {1, 6, 9}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Local weighted optimizations and open problems Future work Benoît Corsini

177

Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Question
What is (asymptotically) the minimal size of a line-connected partition of weight at most 1?
In particular, is it approximately n/2 as it was the case for general partitions?

Local weighted optimizations and open problems Future work Benoît Corsini

178

Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Question
What is (asymptotically) the minimal size of a line-connected partition of weight at most 1?
In particular, is it approximately n/2 as it was the case for general partitions?

Local weighted optimizations and open problems Future work Benoît Corsini

179

Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Question
What is (asymptotically) the minimal size of a line-connected partition of weight at most 1?
In particular, is it approximately n/2 as it was the case for general partitions?

Local weighted optimizations and open problems Future work Benoît Corsini

180

Open problem: some progress (or not)

Local weighted optimizations and open problems Future work Benoît Corsini

181

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Local weighted optimizations and open problems Future work Benoît Corsini

182

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 − α) for some α > 0.

Local weighted optimizations and open problems Future work Benoît Corsini

183

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 − α) for some α > 0.

→→→→→→→→→→→→→→→→→ I personally tend to believe that the correct behaviour is n/2 for line-connected partitions.

Local weighted optimizations and open problems Future work Benoît Corsini

184

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 − α) for some α > 0.

→→→→→→→→→→→→→→→→→ I personally tend to believe that the correct behaviour is n/2 for line-connected partitions.
→→→→→→→→→→→→→→→→→ I am biased because this would simplify the general results I want to study.

Local weighted optimizations and open problems Future work Benoît Corsini

185

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 − α) for some α > 0.

→→→→→→→→→→→→→→→→→ I personally tend to believe that the correct behaviour is n/2 for line-connected partitions.
→→→→→→→→→→→→→→→→→ I am biased because this would simplify the general results I want to study.
→→→→→→→→→→→→→→→→→ A proof that it is not n/2 but rather n/(2 − β) for some β > 0 is also welcome.

Local weighted optimizations and open problems Future work Benoît Corsini

186

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 − α) for some α > 0.

→→→→→→→→→→→→→→→→→ I personally tend to believe that the correct behaviour is n/2 for line-connected partitions.
→→→→→→→→→→→→→→→→→ I am biased because this would simplify the general results I want to study.
→→→→→→→→→→→→→→→→→ A proof that it is not n/2 but rather n/(2 − β) for some β > 0 is also welcome.
→→→→→→→→→→→→→→→→→ It would however lead to further questions...

Local weighted optimizations and open problems Future work Benoît Corsini

187

Open problem: motivation

Local weighted optimizations and open problems Future work Benoît Corsini

188

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

Local weighted optimizations and open problems Future work Benoît Corsini

189

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:

Local weighted optimizations and open problems Future work Benoît Corsini

190

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
• λ diverges to ∞ with n.

Local weighted optimizations and open problems Future work Benoît Corsini

191

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
• λ diverges to ∞ with n.
• Hn has a diverging density: |E(Hn)|/|V (Hn)| → ∞.

Local weighted optimizations and open problems Future work Benoît Corsini

192

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
• λ diverges to ∞ with n.
• Hn has a diverging density: |E(Hn)|/|V (Hn)| → ∞.
• Hn is a star.

Local weighted optimizations and open problems Future work Benoît Corsini

193

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
• λ diverges to ∞ with n.
• Hn has a diverging density: |E(Hn)|/|V (Hn)| → ∞.
• Hn is a star.

In general, the speed with respect to (Hn, λ) is closely related to the size of a special type of
partition built from Hn of weight at most λ, and the case of the line once again proves to be the
most difficult one to study...

Local weighted optimizations and open problems Future work Benoît Corsini

194

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
• λ diverges to ∞ with n.
• Hn has a diverging density: |E(Hn)|/|V (Hn)| → ∞.
• Hn is a star.

In general, the speed with respect to (Hn, λ) is closely related to the size of a special type of
partition built from Hn of weight at most λ, and the case of the line once again proves to be the
most difficult one to study...

To fully solve the “speed problem”, we would further need to understand the size of a line-connected
partition of weight at most λ, which should not be substantially harder than the case λ = 1.

Local weighted optimizations and open problems Future work Benoît Corsini

195

Thank you!
Thank you!
Thank you!

Thank you!
Thank you!

Thank you!
Thank you!

Thankyou!

Thank you! Thank you!Thank you!Thank you!

Local weighted optimizations and open problems Thank you! Benoît Corsini

196

References

• Addario-Berry, L., Barrett, J., & Corsini, B. (2022). Finding minimum spanning trees via local
improvements. arXiv preprint arXiv:2205.05075. (ABBC’22)

• Addario-Berry, L., Broutin, N., & Reed, B. (2006). The diameter of the minimum spanning tree
of a complete graph. Discrete Mathematics & Theoretical Computer Science, (Proceedings).
(ABBR’06)

• Frieze, A. M. (1985). On the value of a random minimum spanning tree problem. Discrete
Applied Mathematics, 10(1), 47-56. (F’85)

This work was partially supported by the Institut des Sciences Mathématiques (ISM).

Local weighted optimizations and open problems Thank you! Benoît Corsini

197

