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The fundamental question
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Out setup

In the case of the electrical grid, we
• were operating on a 2-dimensional Euclidian plan;
• started with a given network on this plan;
• had a yearly budget allowing us to modify only parts of our graph; and
• were hoping to make it become “more robust”.

We adapt this example and now consider
• nodes with iid distances;
• an arbitrary starting graph;
• a budget corresponding to the weight of the graph; and
• the minimum spanning tree as the target graph.
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Definition

Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
edge weights. Let Hn be a spanning subgraph of Kn and λ > 0 be a positive number.
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Definition

Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
edge weights. Let Hn be a spanning subgraph of Kn and λ > 0 be a positive number.

For any sequence of sets S = (S1, . . . , Sk), define (Hn,0, . . . , Hn,k) as follows.
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For any sequence of sets S = (S1, . . . , Sk), define (Hn,0, . . . , Hn,k) as follows.
• Hn,0 = Hn; and
• Hn,i is obtained by replacing Hn,i−1[Si] on Hn,i−1 by its (local) minimum spanning tree.
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Let Kn = (Kn,U) be the complete weighted graph with independent Uniform([0, 1]) random
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For any sequence of sets S = (S1, . . . , Sk), define (Hn,0, . . . , Hn,k) as follows.
• Hn,0 = Hn; and
• Hn,i is obtained by replacing Hn,i−1[Si] on Hn,i−1 by its (local) minimum spanning tree.

Definition (Optimization)
Say that S = (S1, . . . , Sk) is an optimization with respect to (Hn, λ) if
• Hn,k is the (global) minimum spanning tree of Kn; and
• for any i, the weight of Hn,i−1[Si] is less than λ.
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Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
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Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).

Local weighted optimizations and open problems Optimizations Benoît Corsini

45



Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
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into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).
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Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).
• Given Kn and Hn, there exists a threshold λthr = λthr(Hn;Kn) such that

◦ if λ < λthr, then there exists no optimization with respect to (Hn, λ); and
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Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).
• Given Kn and Hn, there exists a threshold λthr = λthr(Hn;Kn) such that

◦ if λ < λthr, then there exists no optimization with respect to (Hn, λ); and
◦ if λ > λthr, then there exists an optimization with respect to (Hn, λ).
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Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).
• Given Kn and Hn, there exists a threshold λthr = λthr(Hn;Kn) such that

◦ if λ < λthr, then there exists no optimization with respect to (Hn, λ); and
◦ if λ > λthr, then there exists an optimization with respect to (Hn, λ).

• It is easy to check that λthr is larger than the heaviest edge in Hn not in the (global) minimum
spanning tree and smaller than the total weight of Hn.
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Properties

The existence of an optimization with respect to (Hn, λ) means that it is possible to transform Hn

into the (global) minimum spanning tree on Kn by inductively replacing subgraphs of weight less
than λ into (local) optimally weighted trees.
• In the previous example, there exists an optimization with respect to (H, 1).
• If Hn is not a tree, its number of edges will regularly decrease in the process.
• This process can always end up on a “local minimum” (by adding more sets to the sequence).
• Given Kn and Hn, there exists a threshold λthr = λthr(Hn;Kn) such that

◦ if λ < λthr, then there exists no optimization with respect to (Hn, λ); and
◦ if λ > λthr, then there exists an optimization with respect to (Hn, λ).

• It is easy to check that λthr is larger than the heaviest edge in Hn not in the (global) minimum
spanning tree and smaller than the total weight of Hn.

→→→→→→→→→→→→→→→→→ We hope to characterize λthr when n is large for various choices of Hn.

Local weighted optimizations and open problems Optimizations Benoît Corsini

52



Table of contents

� Local weighted optimizations

3 Our results

� Proof idea

☼ Future work and open problem

Local weighted optimizations and open problems Results Benoît Corsini

53



The ONE result

Local weighted optimizations and open problems Results Benoît Corsini

54



The ONE result

Theorem (Addario-Berry, Barrett, � [2022])
Let Kn = (Kn,U) be the complete weighted graph with independent uniform edge weights, Hn be
a spanning subgraph of Kn chosen independently of U, and ε > 0.

Then, with high probability as n goes to infinity:
• there exists an optimization with respect to (Hn, 1 + ε) ; and
• there does not exist any optimization with respect to (Hn, 1 − ε).
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The ONE result

Theorem (Addario-Berry, Barrett, � [2022])
Let Kn = (Kn,U) be the complete weighted graph with independent uniform edge weights, Hn be
a spanning subgraph of Kn chosen independently of U, and ε > 0.

Then, with high probability as n goes to infinity:
• there exists an optimization with respect to (Hn, 1 + ε) ; and
• there does not exist any optimization with respect to (Hn, 1 − ε).

→→→→→→→→→→→→→→→→→ There is a universal threshold at 1, no matter the structure (or density) of Hn.
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Lower bound

The lower bound is actually straightforward to check.
• Since Hn is chosen independently of U, it has an edge e with weight 1 − oP(1) ≥ 1 − ϵ.
• This edge is likely not in the (global) MST.
• If none of the sets contain both ends of e, then e belongs to the final graph.
• Otherwise, the first subgraph containing e has weight at least 1 − ϵ.

→→→→→→→→→→→→→→→→→ There does not exist an optimization with respect to (Hn, 1 − ϵ).

I now focus on the upper bound, more technical, but more constructive.
→→→→→→→→→→→→→→→→→ Given a graph Hn, can we find a sequence of sets transforming Hn into the (global) MST?
→→→→→→→→→→→→→→→→→ Can we show that the maximal weight of these sets is not too large (i.e. ≤ 1 + ϵ)?
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Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
• The “eating algorithm”, a method for locally growing MST.
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Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
• The “eating algorithm”, a method for locally growing MST.
• A Ramsey-like argument to reduce the study from any Hn to only three cases.
• A case-by-case proof for these three cases.

→→→→→→→→→→→→→→→→→ The last argument is the most complex and detail-oriented.
→→→→→→→→→→→→→→→→→ I will only explain the first two points.

◦ For simplicity, I now drop the subscript n on Hn.
◦ I will keep assuming that things are “large enough”.
◦ Every pair of nodes has an independent uniform weight, even those not part of H.
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Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?
→→→→→→→→→→→→→→→→→ If we have a MST on n − 1 nodes, can we extend it to n nodes?

Useful facts about the MST on Kn:
• Its total weight is ζ(3) + oP(1). (F’85)
• Its edges have weight OP(log n/n). (ABBC’22)
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Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph
by its (local) MST.
→→→→→→→→→→→→→→→→→ Can we extend this MST so that it keeps “eating” nodes?
→→→→→→→→→→→→→→→→→ If we have a MST on n − 1 nodes, can we extend it to n nodes?

Useful facts about the MST on Kn:
• Its total weight is ζ(3) + oP(1). (F’85)
• Its edges have weight OP(log n/n). (ABBC’22)
• Its diameter is ΘP(n1/3). (ABBR’06)

Local weighted optimizations and open problems Proof idea Benoît Corsini
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Consider the following (easier) scenario.
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Consider the following (easier) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is Ue + ζ(3) ≤ 1 + ζ(3).
→→→→→→→→→→→→→→→→→ We need to do better!

Instead we consider the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ The weight of a path in the MST is oP(1).
→→→→→→→→→→→→→→→→→ The path from n to i has weight Ue + oP(1) ≤ 1 + ϵ.
→→→→→→→→→→→→→→→→→ After considering all such paths, we have the (global) MST.

� Where is the problem? The weight of the paths might change during the process!
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Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is ≤ deg(n) + ζ(3).
→→→→→→→→→→→→→→→→→ This is not even bounded anymore!

We consider again the paths from n to 1, 2, . . . , n − 1.
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Consider now the following (harder) scenario.
→→→→→→→→→→→→→→→→→ We have the MST on n − 1 nodes.
→→→→→→→→→→→→→→→→→ The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.
→→→→→→→→→→→→→→→→→ The weight of this step is ≤ deg(n) + ζ(3).
→→→→→→→→→→→→→→→→→ This is not even bounded anymore!

We consider again the paths from n to 1, 2, . . . , n − 1.
→→→→→→→→→→→→→→→→→ They are not unique, so we need to choose carefully.
→→→→→→→→→→→→→→→→→ After considering the paths, we have a supergraph of the MST.
→→→→→→→→→→→→→→→→→ We remove extra edges by considering cycles (carefully again).
→→→→→→→→→→→→→→→→→ Luckily, we obtain steps with weight 1 + oP(1) again.
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Local weighted optimizations and open problems Proof idea Benoît Corsini

127



The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.
• if it has a large degree, then the neighbours of this high degree either have:

Local weighted optimizations and open problems Proof idea Benoît Corsini

128



The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.
• if it has a large degree, then the neighbours of this high degree either have:

◦ a large clique, thus creating a large (induced) complete graph, or
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The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.
• if it has a large degree, then the neighbours of this high degree either have:

◦ a large clique, thus creating a large (induced) complete graph, or
◦ a large independent set, thus creating a large (induced) star.
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The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.
• if it has a large degree, then the neighbours of this high degree either have:

◦ a large clique, thus creating a large (induced) complete graph, or
◦ a large independent set, thus creating a large (induced) star.

Thus, if we can transform a large complete graph, star, and line into their MST by only changing
subgraphs of weight 1 + oP(1), then we can do the same for any graph.
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The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
• a large graph either has a large degree or a large diameter;
• if it has a large diameter, then it contains a long (induced) line.
• if it has a large degree, then the neighbours of this high degree either have:

◦ a large clique, thus creating a large (induced) complete graph, or
◦ a large independent set, thus creating a large (induced) star.

Thus, if we can transform a large complete graph, star, and line into their MST by only changing
subgraphs of weight 1 + oP(1), then we can do the same for any graph.

� We need to be careful on the dependency with the edge weights U.
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Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
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Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
• This allows us to consider only three different cases: the complete graph, a star, or a line.
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Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
• This allows us to consider only three different cases: the complete graph, a star, or a line.

→→→→→→→→→→→→→→→→→ To conclude the proof, we construct sequences of sets on those three cases.
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Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
• This allows us to consider only three different cases: the complete graph, a star, or a line.

→→→→→→→→→→→→→→→→→ To conclude the proof, we construct sequences of sets on those three cases.
◦ For the complete graph and the star, it is quite easy, since all nodes are close to each other.
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Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
• This allows us to consider only three different cases: the complete graph, a star, or a line.

→→→→→→→→→→→→→→→→→ To conclude the proof, we construct sequences of sets on those three cases.
◦ For the complete graph and the star, it is quite easy, since all nodes are close to each other.
◦ The line is more complicated, since we have to start with a large subline of small weights,

but then the corresponding MST is not independent of the weights.
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Concluding the proof

• With the eating algorithm, we can grow MSTs within H (assuming “some” independence).
• This allows us to consider only three different cases: the complete graph, a star, or a line.

→→→→→→→→→→→→→→→→→ To conclude the proof, we construct sequences of sets on those three cases.
◦ For the complete graph and the star, it is quite easy, since all nodes are close to each other.
◦ The line is more complicated, since we have to start with a large subline of small weights,

but then the corresponding MST is not independent of the weights.
→ In that case, the eating algorithm still works, but the proof is more tedious.

Local weighted optimizations and open problems Proof idea Benoît Corsini
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Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value?
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• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
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• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm?
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• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
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Some future directions:
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Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm? . . . . . . . . . . . . . . . . . . . . . . . �

◦ The size of a one-step change, instead of the weight? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

• Our theorem proves the existence of a specific optimization with respect to (Hn, λ). What
happens now if we consider a random sequence S = (S1, . . . , Sk)? If we keep generating new
subsets for as long as we want, do we eventually reach the minimum spanning tree?
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Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm? . . . . . . . . . . . . . . . . . . . . . . . �

◦ The size of a one-step change, instead of the weight? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

• Our theorem proves the existence of a specific optimization with respect to (Hn, λ). What
happens now if we consider a random sequence S = (S1, . . . , Sk)? If we keep generating new
subsets for as long as we want, do we eventually reach the minimum spanning tree? . . . . . �
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Future work

Some future directions:
• Our theorem states that, for Hn and λ > 1, asymptotically there exists an optimization
S = (S1, . . . , Sk). Now, what can we say about k? What is its minimal possible value? . . . �

• Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change Hn,i−1[Si]). Could we consider other weight functions such as
◦ The p-norm of the one-step changes, instead of the ∞-norm? . . . . . . . . . . . . . . . . . . . . . . . �

◦ The size of a one-step change, instead of the weight? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

• Our theorem proves the existence of a specific optimization with respect to (Hn, λ). What
happens now if we consider a random sequence S = (S1, . . . , Sk)? If we keep generating new
subsets for as long as we want, do we eventually reach the minimum spanning tree? . . . . . �

→→→→→→→→→→→→→→→→→ Let me focus on the first question, in particular the reason why it is � and not �.
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Open problem

From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
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Open problem

From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
For a partition (S1, . . . , Sk) ∈ Pn, we refer to k as its size and maxj{

∑
i∈Sj

Ui} as its weight.
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From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
For a partition (S1, . . . , Sk) ∈ Pn, we refer to k as its size and maxj{

∑
i∈Sj

Ui} as its weight.

Pre-question
What is (asymptotically) the minimal size of a partition of weight at most 1?
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From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
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Open problem

From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
For a partition (S1, . . . , Sk) ∈ Pn, we refer to k as its size and maxj{

∑
i∈Sj

Ui} as its weight.

Pre-question
What is (asymptotically) the minimal size of a partition of weight at most 1?

It is actually not too hard to prove that this should be of order n/2: we can almost exactly pair the
uniforms U1, . . . , Un so that the sum of each pair is less than 1.

Local weighted optimizations and open problems Future work Benoît Corsini

158



Open problem

From now on, U1, . . . , Un are independent uniforms and Pn is the set of partitions of [n].
For a partition (S1, . . . , Sk) ∈ Pn, we refer to k as its size and maxj{

∑
i∈Sj

Ui} as its weight.

Pre-question
What is (asymptotically) the minimal size of a partition of weight at most 1?

It is actually not too hard to prove that this should be of order n/2: we can almost exactly pair the
uniforms U1, . . . , Un so that the sum of each pair is less than 1.

→→→→→→→→→→→→→→→→→ We are now interested in the behaviour of the size when we put more constraints on the
partition.
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Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).
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Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
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Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
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Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
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Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U1 U2 U3 U4 U5 U6 U7 U8 U9

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U1 U2 U3 U4 U5 U6 U7 U8 U9
S1 = {3, 4}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U3 U4U1 U2 U5 U6 U7 U8 U9
S1 = {3, 4}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U1 U2 U5 U6 U7 U8 U9
S1 = {3, 4}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U1 U2 U5 U6 U7 U8 U9
S1 = {3, 4}
S2 = {2, 5}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U2 U5U1 U6 U7 U8 U9
S1 = {3, 4}
S2 = {2, 5}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U1 U6 U7 U8 U9
S1 = {3, 4}
S2 = {2, 5}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U1 U6 U7 U8 U9
S1 = {3, 4}
S2 = {2, 5}
S3 = {7, 8}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U7 U8U1 U6 U9
S1 = {3, 4}
S2 = {2, 5}
S3 = {7, 8}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U1 U6 U9
S1 = {3, 4}
S2 = {2, 5}
S3 = {7, 8}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

U1 U6 U9
S1 = {3, 4}
S2 = {2, 5}
S3 = {7, 8}
S4 = {1, 6, 9}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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176



Open problem

S1 = {3, 4}
S2 = {2, 5}
S3 = {7, 8}
S4 = {1, 6, 9}

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.
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177



Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Question
What is (asymptotically) the minimal size of a line-connected partition of weight at most 1?
In particular, is it approximately n/2 as it was the case for general partitions?
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Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Question
What is (asymptotically) the minimal size of a line-connected partition of weight at most 1?
In particular, is it approximately n/2 as it was the case for general partitions?

Local weighted optimizations and open problems Future work Benoît Corsini
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Open problem

Call line-connected partition a partition (S1, . . . , Sk) where Si is an interval of [n]\(S1∪. . .∪Si−1).

A line partition can be constructed as follows.
• See U1, . . . , Un as aligned on a line.
• Remove a segment from this line.
• Reconnect the two ends of the removed segment and repeat the first step.

Question
What is (asymptotically) the minimal size of a line-connected partition of weight at most 1?
In particular, is it approximately n/2 as it was the case for general partitions?

Local weighted optimizations and open problems Future work Benoît Corsini
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Open problem: some progress (or not)
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Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .
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Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 − α) for some α > 0.
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Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 − α) for some α > 0.

→→→→→→→→→→→→→→→→→ I personally tend to believe that the correct behaviour is n/2 for line-connected partitions.
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Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 − α) for some α > 0.

→→→→→→→→→→→→→→→→→ I personally tend to believe that the correct behaviour is n/2 for line-connected partitions.
→→→→→→→→→→→→→→→→→ I am biased because this would simplify the general results I want to study.
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Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 − α) for some α > 0.

→→→→→→→→→→→→→→→→→ I personally tend to believe that the correct behaviour is n/2 for line-connected partitions.
→→→→→→→→→→→→→→→→→ I am biased because this would simplify the general results I want to study.
→→→→→→→→→→→→→→→→→ A proof that it is not n/2 but rather n/(2 − β) for some β > 0 is also welcome.
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Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (S1, . . . , Sk) of weight
at most 1, we have

k =
k∑

j=1
1 ≥

k∑
j=1

∑
i∈Sj

Ui =
∑
i∈[n]

Ui ≃ n

2 .

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 − α) for some α > 0.

→→→→→→→→→→→→→→→→→ I personally tend to believe that the correct behaviour is n/2 for line-connected partitions.
→→→→→→→→→→→→→→→→→ I am biased because this would simplify the general results I want to study.
→→→→→→→→→→→→→→→→→ A proof that it is not n/2 but rather n/(2 − β) for some β > 0 is also welcome.
→→→→→→→→→→→→→→→→→ It would however lead to further questions...
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Open problem: motivation
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
• λ diverges to ∞ with n.
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
• λ diverges to ∞ with n.
• Hn has a diverging density: |E(Hn)|/|V (Hn)| → ∞.
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
• λ diverges to ∞ with n.
• Hn has a diverging density: |E(Hn)|/|V (Hn)| → ∞.
• Hn is a star.
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
• λ diverges to ∞ with n.
• Hn has a diverging density: |E(Hn)|/|V (Hn)| → ∞.
• Hn is a star.

In general, the speed with respect to (Hn, λ) is closely related to the size of a special type of
partition built from Hn of weight at most λ, and the case of the line once again proves to be the
most difficult one to study...
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (Hn, λ)?

We conjecture that the speed with respect to (Hn, λ) should be of order w(Hn)/λ ≃ |E(Hn)|/2λ

and believe to have the proof when:
• λ diverges to ∞ with n.
• Hn has a diverging density: |E(Hn)|/|V (Hn)| → ∞.
• Hn is a star.

In general, the speed with respect to (Hn, λ) is closely related to the size of a special type of
partition built from Hn of weight at most λ, and the case of the line once again proves to be the
most difficult one to study...

To fully solve the “speed problem”, we would further need to understand the size of a line-connected
partition of weight at most λ, which should not be substantially harder than the case λ = 1.
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Thank you!
Thank you!
Thank you!

Thank you!
Thank you!

Thank you!
Thank you!

Thankyou!

Thank you! Thank you!Thank you!Thank you!
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