Local weighted optimizations

and open problems

Benoit Corsini

- Local weighted optimizations
© Our results

8 Proof idea
(2) Future work and open problem

- Local weighted optimizations

Our results

Proof idea
(1) Future work and open problem

Motivation

Motivation

The fundamental question

Motivation

The fundamental question
When considering real-life networks, it is often impossible to access the whole graph at once.

Motivation

The fundamental question

When considering real-life networks, it is often impossible to access the whole graph at once.
So if we further want to modify the graph, this becomes even more complicated...

Motivation

The fundamental question

When considering real-life networks, it is often impossible to access the whole graph at once.
So if we further want to modify the graph, this becomes even more complicated...
Assume we have a target property that we want our network to satisfy; can we operate "local" modifications eventually leading to the global graph satisfying this property?

Motivation

Source: mivolink.blogspot.com

Modernizing Canada's Aging Power Grid

by Powertec Electric | Apr 20, 2019 | Electrical Power, Electricians, Hiring Electricians | 0 comments

In the 70s and 80s, there was a lot of investment into electrical infrastructure in Canada. New technologies were demanding higher electrical capacity in homes, and the growth of Canada's large urban centres meant that demand was sure to remain high. The surge of investment into the grid was so monumental that supply actually ended up outweighing demand, and electricity could be bought on the cheap for many years. These investments have sustained us for
 quite some time, but we may now be reaching the breaking point of our electric grid.

In the case of the electrical grid, we

In the case of the electrical grid, we

- were operating on a 2-dimensional Euclidian plan;

In the case of the electrical grid, we

- were operating on a 2-dimensional Euclidian plan;
- started with a given network on this plan;

In the case of the electrical grid, we

- were operating on a 2-dimensional Euclidian plan;
- started with a given network on this plan;
- had a yearly budget allowing us to modify only parts of our graph; and

In the case of the electrical grid, we

- were operating on a 2-dimensional Euclidian plan;
- started with a given network on this plan;
- had a yearly budget allowing us to modify only parts of our graph; and
- were hoping to make it become "more robust".

In the case of the electrical grid, we

- were operating on a 2-dimensional Euclidian plan;
- started with a given network on this plan;
- had a yearly budget allowing us to modify only parts of our graph; and
- were hoping to make it become "more robust".

We adapt this example and now consider

Out setup

In the case of the electrical grid, we

- were operating on a 2-dimensional Euclidian plan;
- started with a given network on this plan;
- had a yearly budget allowing us to modify only parts of our graph; and
- were hoping to make it become "more robust".

We adapt this example and now consider

- nodes with iid distances;

Out setup

In the case of the electrical grid, we

- were operating on a 2-dimensional Euclidian plan;
- started with a given network on this plan;
- had a yearly budget allowing us to modify only parts of our graph; and
- were hoping to make it become "more robust".

We adapt this example and now consider

- nodes with iid distances;
- an arbitrary starting graph;

Out setup

In the case of the electrical grid, we

- were operating on a 2-dimensional Euclidian plan;
- started with a given network on this plan;
- had a yearly budget allowing us to modify only parts of our graph; and
- were hoping to make it become "more robust".

We adapt this example and now consider

- nodes with iid distances;
- an arbitrary starting graph;
- a budget corresponding to the weight of the graph; and

Out setup

In the case of the electrical grid, we

- were operating on a 2-dimensional Euclidian plan;
- started with a given network on this plan;
- had a yearly budget allowing us to modify only parts of our graph; and
- were hoping to make it become "more robust".

We adapt this example and now consider

- nodes with iid distances;
- an arbitrary starting graph;
- a budget corresponding to the weight of the graph; and
- the minimum spanning tree as the target graph.

Example

Example

Example

Example

Example

$\lambda=1$

Example

Example
(e)

$$
\begin{aligned}
& 2 \\
& 2-2 \\
& 2
\end{aligned}
$$

（8）
电

Example
(e)

$$
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
$$

(3)

$$
\begin{aligned}
& 4 \\
& 4
\end{aligned}
$$

Definition

Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent $\operatorname{Uniform}([0,1])$ random edge weights. Let H_{n} be a spanning subgraph of K_{n} and $\lambda>0$ be a positive number.

Definition

Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent $\operatorname{Uniform}([0,1])$ random edge weights. Let H_{n} be a spanning subgraph of K_{n} and $\lambda>0$ be a positive number.

For any sequence of sets $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$, define $\left(H_{n, 0}, \ldots, H_{n, k}\right)$ as follows.

Definition

Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent $\operatorname{Uniform}([0,1])$ random edge weights. Let H_{n} be a spanning subgraph of K_{n} and $\lambda>0$ be a positive number.

For any sequence of sets $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$, define $\left(H_{n, 0}, \ldots, H_{n, k}\right)$ as follows.

- $H_{n, 0}=H_{n}$; and

Definition

Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent $\operatorname{Uniform}([0,1])$ random edge weights. Let H_{n} be a spanning subgraph of K_{n} and $\lambda>0$ be a positive number.

For any sequence of sets $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$, define $\left(H_{n, 0}, \ldots, H_{n, k}\right)$ as follows.

- $H_{n, 0}=H_{n}$; and
- $H_{n, i}$ is obtained by replacing $H_{n, i-1}\left[S_{i}\right]$ on $H_{n, i-1}$ by its (local) minimum spanning tree.

Definition

Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent $\operatorname{Uniform}([0,1])$ random edge weights. Let H_{n} be a spanning subgraph of K_{n} and $\lambda>0$ be a positive number.

For any sequence of sets $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$, define $\left(H_{n, 0}, \ldots, H_{n, k}\right)$ as follows.

- $H_{n, 0}=H_{n}$; and
- $H_{n, i}$ is obtained by replacing $H_{n, i-1}\left[S_{i}\right]$ on $H_{n, i-1}$ by its (local) minimum spanning tree.

Definition (Optimization)

Definition

Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent $\operatorname{Uniform}([0,1])$ random edge weights. Let H_{n} be a spanning subgraph of K_{n} and $\lambda>0$ be a positive number.

For any sequence of sets $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$, define $\left(H_{n, 0}, \ldots, H_{n, k}\right)$ as follows.

- $H_{n, 0}=H_{n}$; and
- $H_{n, i}$ is obtained by replacing $H_{n, i-1}\left[S_{i}\right]$ on $H_{n, i-1}$ by its (local) minimum spanning tree.

Definition (Optimization)

Say that $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$ is an optimization with respect to $\left(H_{n}, \lambda\right)$ if

Definition

Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent $\operatorname{Uniform}([0,1])$ random edge weights. Let H_{n} be a spanning subgraph of K_{n} and $\lambda>0$ be a positive number.

For any sequence of sets $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$, define $\left(H_{n, 0}, \ldots, H_{n, k}\right)$ as follows.

- $H_{n, 0}=H_{n}$; and
- $H_{n, i}$ is obtained by replacing $H_{n, i-1}\left[S_{i}\right]$ on $H_{n, i-1}$ by its (local) minimum spanning tree.

Definition (Optimization)

Say that $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$ is an optimization with respect to $\left(H_{n}, \lambda\right)$ if

- $H_{n, k}$ is the (global) minimum spanning tree of \mathbb{K}_{n}; and

Definition

Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent $\operatorname{Uniform}([0,1])$ random edge weights. Let H_{n} be a spanning subgraph of K_{n} and $\lambda>0$ be a positive number.

For any sequence of sets $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$, define $\left(H_{n, 0}, \ldots, H_{n, k}\right)$ as follows.

- $H_{n, 0}=H_{n}$; and
- $H_{n, i}$ is obtained by replacing $H_{n, i-1}\left[S_{i}\right]$ on $H_{n, i-1}$ by its (local) minimum spanning tree.

Definition (Optimization)

Say that $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$ is an optimization with respect to $\left(H_{n}, \lambda\right)$ if

- $H_{n, k}$ is the (global) minimum spanning tree of \mathbb{K}_{n}; and
- for any i, the weight of $H_{n, i-1}\left[S_{i}\right]$ is less than λ.
\qquad 반․․ L? !

Properties

The existence of an optimization with respect to $\left(H_{n}, \lambda\right)$ means that it is possible to transform H_{n} into the (global) minimum spanning tree on \mathbb{K}_{n} by inductively replacing subgraphs of weight less than λ into (local) optimally weighted trees.

Properties

The existence of an optimization with respect to $\left(H_{n}, \lambda\right)$ means that it is possible to transform H_{n} into the (global) minimum spanning tree on \mathbb{K}_{n} by inductively replacing subgraphs of weight less than λ into (local) optimally weighted trees.

- In the previous example, there exists an optimization with respect to $(H, 1)$.

Properties

The existence of an optimization with respect to $\left(H_{n}, \lambda\right)$ means that it is possible to transform H_{n} into the (global) minimum spanning tree on \mathbb{K}_{n} by inductively replacing subgraphs of weight less than λ into (local) optimally weighted trees.

- In the previous example, there exists an optimization with respect to $(H, 1)$.
- If H_{n} is not a tree, its number of edges will regularly decrease in the process.

Properties

The existence of an optimization with respect to $\left(H_{n}, \lambda\right)$ means that it is possible to transform H_{n} into the (global) minimum spanning tree on \mathbb{K}_{n} by inductively replacing subgraphs of weight less than λ into (local) optimally weighted trees.

- In the previous example, there exists an optimization with respect to $(H, 1)$.
- If H_{n} is not a tree, its number of edges will regularly decrease in the process.
- This process can always end up on a "local minimum" (by adding more sets to the sequence).

Properties

The existence of an optimization with respect to $\left(H_{n}, \lambda\right)$ means that it is possible to transform H_{n} into the (global) minimum spanning tree on \mathbb{K}_{n} by inductively replacing subgraphs of weight less than λ into (local) optimally weighted trees.

- In the previous example, there exists an optimization with respect to $(H, 1)$.
- If H_{n} is not a tree, its number of edges will regularly decrease in the process.
- This process can always end up on a "local minimum" (by adding more sets to the sequence).
- Given \mathbb{K}_{n} and H_{n}, there exists a threshold $\lambda_{\text {thr }}=\lambda_{\mathrm{thr}}\left(H_{n} ; \mathbb{K}_{n}\right)$ such that

Properties

The existence of an optimization with respect to $\left(H_{n}, \lambda\right)$ means that it is possible to transform H_{n} into the (global) minimum spanning tree on \mathbb{K}_{n} by inductively replacing subgraphs of weight less than λ into (local) optimally weighted trees.

- In the previous example, there exists an optimization with respect to $(H, 1)$.
- If H_{n} is not a tree, its number of edges will regularly decrease in the process.
- This process can always end up on a "local minimum" (by adding more sets to the sequence).
- Given \mathbb{K}_{n} and H_{n}, there exists a threshold $\lambda_{\text {thr }}=\lambda_{\mathrm{thr}}\left(H_{n} ; \mathbb{K}_{n}\right)$ such that
- if $\lambda<\lambda_{\mathrm{thr}}$, then there exists no optimization with respect to $\left(H_{n}, \lambda\right)$; and

Properties

The existence of an optimization with respect to $\left(H_{n}, \lambda\right)$ means that it is possible to transform H_{n} into the (global) minimum spanning tree on \mathbb{K}_{n} by inductively replacing subgraphs of weight less than λ into (local) optimally weighted trees.

- In the previous example, there exists an optimization with respect to $(H, 1)$.
- If H_{n} is not a tree, its number of edges will regularly decrease in the process.
- This process can always end up on a "local minimum" (by adding more sets to the sequence).
- Given \mathbb{K}_{n} and H_{n}, there exists a threshold $\lambda_{\text {thr }}=\lambda_{\mathrm{thr}}\left(H_{n} ; \mathbb{K}_{n}\right)$ such that
- if $\lambda<\lambda_{\text {thr }}$, then there exists no optimization with respect to $\left(H_{n}, \lambda\right)$; and
- if $\lambda>\lambda_{\mathrm{thr}}$, then there exists an optimization with respect to $\left(H_{n}, \lambda\right)$.

Properties

The existence of an optimization with respect to $\left(H_{n}, \lambda\right)$ means that it is possible to transform H_{n} into the (global) minimum spanning tree on \mathbb{K}_{n} by inductively replacing subgraphs of weight less than λ into (local) optimally weighted trees.

- In the previous example, there exists an optimization with respect to $(H, 1)$.
- If H_{n} is not a tree, its number of edges will regularly decrease in the process.
- This process can always end up on a "local minimum" (by adding more sets to the sequence).
- Given \mathbb{K}_{n} and H_{n}, there exists a threshold $\lambda_{\text {thr }}=\lambda_{\text {thr }}\left(H_{n} ; \mathbb{K}_{n}\right)$ such that
- if $\lambda<\lambda_{\text {thr }}$, then there exists no optimization with respect to $\left(H_{n}, \lambda\right)$; and
- if $\lambda>\lambda_{\mathrm{thr}}$, then there exists an optimization with respect to $\left(H_{n}, \lambda\right)$.
- It is easy to check that λ_{thr} is larger than the heaviest edge in H_{n} not in the (global) minimum spanning tree and smaller than the total weight of H_{n}.

Properties

The existence of an optimization with respect to $\left(H_{n}, \lambda\right)$ means that it is possible to transform H_{n} into the (global) minimum spanning tree on \mathbb{K}_{n} by inductively replacing subgraphs of weight less than λ into (local) optimally weighted trees.

- In the previous example, there exists an optimization with respect to $(H, 1)$.
- If H_{n} is not a tree, its number of edges will regularly decrease in the process.
- This process can always end up on a "local minimum" (by adding more sets to the sequence).
- Given \mathbb{K}_{n} and H_{n}, there exists a threshold $\lambda_{\text {thr }}=\lambda_{\text {thr }}\left(H_{n} ; \mathbb{K}_{n}\right)$ such that
- if $\lambda<\lambda_{\text {thr }}$, then there exists no optimization with respect to $\left(H_{n}, \lambda\right)$; and
- if $\lambda>\lambda_{\mathrm{thr}}$, then there exists an optimization with respect to $\left(H_{n}, \lambda\right)$.
- It is easy to check that $\lambda_{\text {thr }}$ is larger than the heaviest edge in H_{n} not in the (global) minimum spanning tree and smaller than the total weight of H_{n}.
\rightarrow We hope to characterize $\lambda_{\text {thr }}$ when n is large for various choices of H_{n}.

- Local weighted optimizations

© Our results

8 Proof idea
(D) Future work and open problem

The ONE result

The ONE result

Theorem (Addario-Berry, Barrett, if [2022])

The ONE result

Theorem (Addario-Berry, Barrett, if [2022])
Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent uniform edge weights, H_{n} be a spanning subgraph of K_{n} chosen independently of \mathbb{U}, and $\varepsilon>0$.

The ONE result

Theorem (Addario-Berry, Barrett, if [2022])
Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent uniform edge weights, H_{n} be a spanning subgraph of K_{n} chosen independently of \mathbb{U}, and $\varepsilon>0$.

Then, with high probability as n goes to infinity:

The ONE result

Theorem (Addario-Berry, Barrett, if [2022])
Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent uniform edge weights, H_{n} be a spanning subgraph of K_{n} chosen independently of \mathbb{U}, and $\varepsilon>0$.

Then, with high probability as n goes to infinity:

- there exists an optimization with respect to ($H_{n}, 1+\varepsilon$) ; and

The ONE result

Theorem (Addario-Berry, Barrett, if [2022])
Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent uniform edge weights, H_{n} be a spanning subgraph of K_{n} chosen independently of \mathbb{U}, and $\varepsilon>0$.

Then, with high probability as n goes to infinity:

- there exists an optimization with respect to ($H_{n}, 1+\varepsilon$) ; and
- there does not exist any optimization with respect to $\left(H_{n}, 1-\varepsilon\right)$.

The ONE result

Theorem (Addario-Berry, Barrett, if [2022])
Let $\mathbb{K}_{n}=\left(K_{n}, \mathbb{U}\right)$ be the complete weighted graph with independent uniform edge weights, H_{n} be a spanning subgraph of K_{n} chosen independently of \mathbb{U}, and $\varepsilon>0$.

Then, with high probability as n goes to infinity:

- there exists an optimization with respect to ($H_{n}, 1+\varepsilon$) ; and
- there does not exist any optimization with respect to $\left(H_{n}, 1-\varepsilon\right)$.
\rightarrow There is a universal threshold at 1 , no matter the structure (or density) of H_{n}.

- Local weighted optimizations

Our results

8 Proof idea
(D) Future work and open problem

Lower bound

The lower bound is actually straightforward to check.

Lower bound

The lower bound is actually straightforward to check.

- Since H_{n} is chosen independently of \mathbb{U}, it has an edge e with weight $1-o_{\mathbb{P}}(1) \geq 1-\epsilon$.

Lower bound

The lower bound is actually straightforward to check.

- Since H_{n} is chosen independently of \mathbb{U}, it has an edge e with weight $1-o_{\mathbb{P}}(1) \geq 1-\epsilon$.
- This edge is likely not in the (global) MST.

Lower bound

The lower bound is actually straightforward to check.

- Since H_{n} is chosen independently of \mathbb{U}, it has an edge e with weight $1-o_{\mathbb{P}}(1) \geq 1-\epsilon$.
- This edge is likely not in the (global) MST.
- If none of the sets contain both ends of e, then e belongs to the final graph.

Lower bound

The lower bound is actually straightforward to check.

- Since H_{n} is chosen independently of \mathbb{U}, it has an edge e with weight $1-o_{\mathbb{P}}(1) \geq 1-\epsilon$.
- This edge is likely not in the (global) MST.
- If none of the sets contain both ends of e, then e belongs to the final graph.
- Otherwise, the first subgraph containing e has weight at least $1-\epsilon$.

The lower bound is actually straightforward to check.

- Since H_{n} is chosen independently of \mathbb{U}, it has an edge e with weight $1-o_{\mathbb{P}}(1) \geq 1-\epsilon$.
- This edge is likely not in the (global) MST.
- If none of the sets contain both ends of e, then e belongs to the final graph.
- Otherwise, the first subgraph containing e has weight at least $1-\epsilon$.
\rightarrow There does not exist an optimization with respect to $\left(H_{n}, 1-\epsilon\right)$.

The lower bound is actually straightforward to check.

- Since H_{n} is chosen independently of \mathbb{U}, it has an edge e with weight $1-o_{\mathbb{P}}(1) \geq 1-\epsilon$.
- This edge is likely not in the (global) MST.
- If none of the sets contain both ends of e, then e belongs to the final graph.
- Otherwise, the first subgraph containing e has weight at least $1-\epsilon$.
\rightarrow There does not exist an optimization with respect to $\left(H_{n}, 1-\epsilon\right)$.

I now focus on the upper bound, more technical, but more constructive.

The lower bound is actually straightforward to check.

- Since H_{n} is chosen independently of \mathbb{U}, it has an edge e with weight $1-o_{\mathbb{P}}(1) \geq 1-\epsilon$.
- This edge is likely not in the (global) MST.
- If none of the sets contain both ends of e, then e belongs to the final graph.
- Otherwise, the first subgraph containing e has weight at least $1-\epsilon$.
\rightarrow There does not exist an optimization with respect to $\left(H_{n}, 1-\epsilon\right)$.

I now focus on the upper bound, more technical, but more constructive.
\rightarrow Given a graph H_{n}, can we find a sequence of sets transforming H_{n} into the (global) MST?

The lower bound is actually straightforward to check.

- Since H_{n} is chosen independently of \mathbb{U}, it has an edge e with weight $1-o_{\mathbb{P}}(1) \geq 1-\epsilon$.
- This edge is likely not in the (global) MST.
- If none of the sets contain both ends of e, then e belongs to the final graph.
- Otherwise, the first subgraph containing e has weight at least $1-\epsilon$.
\rightarrow There does not exist an optimization with respect to $\left(H_{n}, 1-\epsilon\right)$.

I now focus on the upper bound, more technical, but more constructive.
\rightarrow Given a graph H_{n}, can we find a sequence of sets transforming H_{n} into the (global) MST?
\rightarrow Can we show that the maximal weight of these sets is not too large (i.e. $\leq 1+\epsilon$)?

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.

- The "eating algorithm", a method for locally growing MST.

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.

- The "eating algorithm", a method for locally growing MST.
- A Ramsey-like argument to reduce the study from any H_{n} to only three cases.

Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.

- The "eating algorithm", a method for locally growing MST.
- A Ramsey-like argument to reduce the study from any H_{n} to only three cases.
- A case-by-case proof for these three cases.

The proof of the upper bound can be decomposed in three parts.

- The "eating algorithm", a method for locally growing MST.
- A Ramsey-like argument to reduce the study from any H_{n} to only three cases.
- A case-by-case proof for these three cases.
\rightarrow The last argument is the most complex and detail-oriented.

The proof of the upper bound can be decomposed in three parts.

- The "eating algorithm", a method for locally growing MST.
- A Ramsey-like argument to reduce the study from any H_{n} to only three cases.
- A case-by-case proof for these three cases.
\rightarrow The last argument is the most complex and detail-oriented.
\rightarrow I will only explain the first two points.

The proof of the upper bound can be decomposed in three parts.

- The "eating algorithm", a method for locally growing MST.
- A Ramsey-like argument to reduce the study from any H_{n} to only three cases.
- A case-by-case proof for these three cases.
\rightarrow The last argument is the most complex and detail-oriented.
\rightarrow I will only explain the first two points.
- For simplicity, I now drop the subscript n on H_{n}.

The proof of the upper bound can be decomposed in three parts.

- The "eating algorithm", a method for locally growing MST.
- A Ramsey-like argument to reduce the study from any H_{n} to only three cases.
- A case-by-case proof for these three cases.
\rightarrow The last argument is the most complex and detail-oriented.
\rightarrow I will only explain the first two points.
- For simplicity, I now drop the subscript n on H_{n}.
- I will keep assuming that things are "large enough".

The proof of the upper bound can be decomposed in three parts.

- The "eating algorithm", a method for locally growing MST.
- A Ramsey-like argument to reduce the study from any H_{n} to only three cases.
- A case-by-case proof for these three cases.
\rightarrow The last argument is the most complex and detail-oriented.
\rightarrow I will only explain the first two points.
- For simplicity, I now drop the subscript n on H_{n}.
- I will keep assuming that things are "large enough".
- Every pair of nodes has an independent uniform weight, even those not part of H.

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?
\rightarrow If we have a MST on $n-1$ nodes, can we extend it to n nodes?

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?
\rightarrow If we have a MST on $n-1$ nodes, can we extend it to n nodes?

Useful facts about the MST on \mathbb{K}_{n} :

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?
\rightarrow If we have a MST on $n-1$ nodes, can we extend it to n nodes?

Useful facts about the MST on \mathbb{K}_{n} :

- Its total weight is $\zeta(3)+o_{\mathbb{P}}(1)$. ($\mathrm{F}^{\prime} 85$)

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?
\rightarrow If we have a MST on $n-1$ nodes, can we extend it to n nodes?

Useful facts about the MST on \mathbb{K}_{n} :

- Its total weight is $\zeta(3)+o_{\mathbb{P}}(1)$. ($\mathrm{F}^{\prime} 85$)
- Its edges have weight $O_{\mathbb{P}}(\log n / n)$. (ABBC'22)

The eating algorithm

Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph by its (local) MST.
\rightarrow Can we extend this MST so that it keeps "eating" nodes?
\rightarrow If we have a MST on $n-1$ nodes, can we extend it to n nodes?

Useful facts about the MST on \mathbb{K}_{n} :

- Its total weight is $\zeta(3)+o_{\mathbb{P}}(1)$. ($\mathrm{F}^{\prime} 85$)
- Its edges have weight $O_{\mathbb{P}}(\log n / n)$. (ABBC'22)
- Its diameter is $\Theta_{\mathbb{P}}\left(n^{1 / 3}\right)$. (ABBR'06)

The eating algorithm (easy case)

The eating algorithm (easy case)

Consider the following (easier) scenario.

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via a single edge e.

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via a single edge e.
If we consider the set $[n]$, we obtain the (global) MST in one step.

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via a single edge e.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $U_{e}+\zeta(3) \leq 1+\zeta(3)$.

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via a single edge e.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $U_{e}+\zeta(3) \leq 1+\zeta(3)$.
\rightarrow We need to do better!

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via a single edge e.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $U_{e}+\zeta(3) \leq 1+\zeta(3)$.
\rightarrow We need to do better!
Instead we consider the paths from n to $1,2, \ldots, n-1$.

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via a single edge e.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $U_{e}+\zeta(3) \leq 1+\zeta(3)$.
\rightarrow We need to do better!
Instead we consider the paths from n to $1,2, \ldots, n-1$.
\rightarrow The weight of a path in the MST is $o_{\mathbb{P}}(1)$.

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via a single edge e.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $U_{e}+\zeta(3) \leq 1+\zeta(3)$.
\rightarrow We need to do better!
Instead we consider the paths from n to $1,2, \ldots, n-1$.
\rightarrow The weight of a path in the MST is $o_{\mathbb{P}}(1)$.
\rightarrow The path from n to i has weight $U_{e}+o_{\mathbb{P}}(1) \leq 1+\epsilon$.

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via a single edge e.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $U_{e}+\zeta(3) \leq 1+\zeta(3)$.
\rightarrow We need to do better!
Instead we consider the paths from n to $1,2, \ldots, n-1$.
\rightarrow The weight of a path in the MST is $o_{\mathbb{P}}(1)$.
\rightarrow The path from n to i has weight $U_{e}+o_{\mathbb{P}}(1) \leq 1+\epsilon$.
\rightarrow After considering all such paths, we have the (global) MST.

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via a single edge e.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $U_{e}+\zeta(3) \leq 1+\zeta(3)$.
\rightarrow We need to do better!
Instead we consider the paths from n to $1,2, \ldots, n-1$.
\rightarrow The weight of a path in the MST is $o_{\mathbb{P}}(1)$.
\rightarrow The path from n to i has weight $U_{e}+o_{\mathbb{P}}(1) \leq 1+\epsilon$.
\rightarrow After considering all such paths, we have the (global) MST.

A Where is the problem?

The eating algorithm (easy case)

Consider the following (easier) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via a single edge e.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $U_{e}+\zeta(3) \leq 1+\zeta(3)$.
\rightarrow We need to do better!
Instead we consider the paths from n to $1,2, \ldots, n-1$.
\rightarrow The weight of a path in the MST is $o_{\mathbb{P}}(1)$.
\rightarrow The path from n to i has weight $U_{e}+o_{\mathbb{P}}(1) \leq 1+\epsilon$.
\rightarrow After considering all such paths, we have the (global) MST.

A Where is the problem? The weight of the paths might change during the process!

The eating algorithm (hard case)

Consider now the following (harder) scenario.

Consider now the following (harder) scenario.
\rightarrow We have the MST on $n-1$ nodes.

Consider now the following (harder) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via multiple edges.

The eating algorithm (hard case)

Consider now the following (harder) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via multiple edges.
If we consider the set $[n]$, we obtain the (global) MST in one step.

The eating algorithm (hard case)

Consider now the following (harder) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via multiple edges.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $\leq \operatorname{deg}(n)+\zeta(3)$.

The eating algorithm (hard case)

Consider now the following (harder) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via multiple edges.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $\leq \operatorname{deg}(n)+\zeta(3)$.
\rightarrow This is not even bounded anymore!

The eating algorithm (hard case)

Consider now the following (harder) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via multiple edges.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $\leq \operatorname{deg}(n)+\zeta(3)$.
\rightarrow This is not even bounded anymore!
We consider again the paths from n to $1,2, \ldots, n-1$.

The eating algorithm (hard case)

Consider now the following (harder) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via multiple edges.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $\leq \operatorname{deg}(n)+\zeta(3)$.
\rightarrow This is not even bounded anymore!
We consider again the paths from n to $1,2, \ldots, n-1$.
\rightarrow They are not unique, so we need to choose carefully.

The eating algorithm (hard case)

Consider now the following (harder) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via multiple edges.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $\leq \operatorname{deg}(n)+\zeta(3)$.
\rightarrow This is not even bounded anymore!
We consider again the paths from n to $1,2, \ldots, n-1$.
\rightarrow They are not unique, so we need to choose carefully.
\rightarrow After considering the paths, we have a supergraph of the MST.

The eating algorithm (hard case)

Consider now the following (harder) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via multiple edges.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $\leq \operatorname{deg}(n)+\zeta(3)$.
\rightarrow This is not even bounded anymore!
We consider again the paths from n to $1,2, \ldots, n-1$.
\rightarrow They are not unique, so we need to choose carefully.
\rightarrow After considering the paths, we have a supergraph of the MST.
\rightarrow We remove extra edges by considering cycles (carefully again).

The eating algorithm (hard case)

Consider now the following (harder) scenario.
\rightarrow We have the MST on $n-1$ nodes.
\rightarrow The n-th node is attached to it via multiple edges.
If we consider the set $[n]$, we obtain the (global) MST in one step.
\rightarrow The weight of this step is $\leq \operatorname{deg}(n)+\zeta(3)$.
\rightarrow This is not even bounded anymore!
We consider again the paths from n to $1,2, \ldots, n-1$.
\rightarrow They are not unique, so we need to choose carefully.
\rightarrow After considering the paths, we have a supergraph of the MST.
\rightarrow We remove extra edges by considering cycles (carefully again).

\rightarrow Luckily, we obtain steps with weight $1+o_{\mathbb{P}}(1)$ again.

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we can expand it until reaching the (global) MST.

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities:

The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.

- a large graph either has a large degree or a large diameter;

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.

- a large graph either has a large degree or a large diameter;
- if it has a large diameter, then it contains a long (induced) line.

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.

- a large graph either has a large degree or a large diameter;
- if it has a large diameter, then it contains a long (induced) line.
- if it has a large degree, then the neighbours of this high degree either have:

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.

- a large graph either has a large degree or a large diameter;
- if it has a large diameter, then it contains a long (induced) line.
- if it has a large degree, then the neighbours of this high degree either have:
- a large clique, thus creating a large (induced) complete graph, or

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.

- a large graph either has a large degree or a large diameter;
- if it has a large diameter, then it contains a long (induced) line.
- if it has a large degree, then the neighbours of this high degree either have:
- a large clique, thus creating a large (induced) complete graph, or
- a large independent set, thus creating a large (induced) star.

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.

- a large graph either has a large degree or a large diameter;
- if it has a large diameter, then it contains a long (induced) line.
- if it has a large degree, then the neighbours of this high degree either have:
- a large clique, thus creating a large (induced) complete graph, or
- a large independent set, thus creating a large (induced) star.

Thus, if we can transform a large complete graph, star, and line into their MST by only changing subgraphs of weight $1+o_{\mathbb{P}}(1)$, then we can do the same for any graph.

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.

- a large graph either has a large degree or a large diameter;
- if it has a large diameter, then it contains a long (induced) line.
- if it has a large degree, then the neighbours of this high degree either have:
- a large clique, thus creating a large (induced) complete graph, or
- a large independent set, thus creating a large (induced) star.

Thus, if we can transform a large complete graph, star, and line into their MST by only changing subgraphs of weight $1+o_{\mathbb{P}}(1)$, then we can do the same for any graph.

A We need to be careful on the dependency with the edge weights \mathbb{U}.

Concluding the proof

- With the eating algorithm, we can grow MSTs within H (assuming "some" independence).

Concluding the proof

- With the eating algorithm, we can grow MSTs within H (assuming "some" independence).
- This allows us to consider only three different cases: the complete graph, a star, or a line.
- With the eating algorithm, we can grow MSTs within H (assuming "some" independence).
- This allows us to consider only three different cases: the complete graph, a star, or a line.
\rightarrow To conclude the proof, we construct sequences of sets on those three cases.
- With the eating algorithm, we can grow MSTs within H (assuming "some" independence).
- This allows us to consider only three different cases: the complete graph, a star, or a line.
\rightarrow To conclude the proof, we construct sequences of sets on those three cases.
- For the complete graph and the star, it is quite easy, since all nodes are close to each other.

Concluding the proof

- With the eating algorithm, we can grow MSTs within H (assuming "some" independence).
- This allows us to consider only three different cases: the complete graph, a star, or a line.
\rightarrow To conclude the proof, we construct sequences of sets on those three cases.
- For the complete graph and the star, it is quite easy, since all nodes are close to each other.
- The line is more complicated, since we have to start with a large subline of small weights, but then the corresponding MST is not independent of the weights.

Concluding the proof

- With the eating algorithm, we can grow MSTs within H (assuming "some" independence).
- This allows us to consider only three different cases: the complete graph, a star, or a line.
\rightarrow To conclude the proof, we construct sequences of sets on those three cases.
- For the complete graph and the star, it is quite easy, since all nodes are close to each other.
- The line is more complicated, since we have to start with a large subline of small weights, but then the corresponding MST is not independent of the weights.
\rightarrow In that case, the eating algorithm still works, but the proof is more tedious.

- Local weighted optimizations

Our results

8 Proof idea
(D) Future work and open problem

Some future directions:

Some future directions:

- Our theorem states that, for H_{n} and $\lambda>1$, asymptotically there exists an optimization $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$. Now, what can we say about k ? What is its minimal possible value?

Some future directions:

- Our theorem states that, for H_{n} and $\lambda>1$, asymptotically there exists an optimization $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$. Now, what can we say about k ? What is its minimal possible value?

Some future directions:

- Our theorem states that, for H_{n} and $\lambda>1$, asymptotically there exists an optimization $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$. Now, what can we say about k ? What is its minimal possible value?
- Our theorem proves the existence of a threshold for a certain cost function (the maximal weight of a one-step change $H_{n, i-1}\left[S_{i}\right]$). Could we consider other weight functions such as

Some future directions:

- Our theorem states that, for H_{n} and $\lambda>1$, asymptotically there exists an optimization $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$. Now, what can we say about k ? What is its minimal possible value?
- Our theorem proves the existence of a threshold for a certain cost function (the maximal weight of a one-step change $H_{n, i-1}\left[S_{i}\right]$). Could we consider other weight functions such as
- The p-norm of the one-step changes, instead of the ∞-norm?

Some future directions:

- Our theorem states that, for H_{n} and $\lambda>1$, asymptotically there exists an optimization $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$. Now, what can we say about k ? What is its minimal possible value?
- Our theorem proves the existence of a threshold for a certain cost function (the maximal weight of a one-step change $H_{n, i-1}\left[S_{i}\right]$). Could we consider other weight functions such as
- The p-norm of the one-step changes, instead of the ∞-norm?

Some future directions:

- Our theorem states that, for H_{n} and $\lambda>1$, asymptotically there exists an optimization $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$. Now, what can we say about k ? What is its minimal possible value?
- Our theorem proves the existence of a threshold for a certain cost function (the maximal weight of a one-step change $H_{n, i-1}\left[S_{i}\right]$). Could we consider other weight functions such as
- The p-norm of the one-step changes, instead of the ∞-norm?
- The size of a one-step change, instead of the weight?

Some future directions:

- Our theorem states that, for H_{n} and $\lambda>1$, asymptotically there exists an optimization $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$. Now, what can we say about k ? What is its minimal possible value?
- Our theorem proves the existence of a threshold for a certain cost function (the maximal weight of a one-step change $H_{n, i-1}\left[S_{i}\right]$). Could we consider other weight functions such as
- The p-norm of the one-step changes, instead of the ∞-norm?
- The size of a one-step change, instead of the weight?

Some future directions:

- Our theorem states that, for H_{n} and $\lambda>1$, asymptotically there exists an optimization $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$. Now, what can we say about k ? What is its minimal possible value? $\ldots \mathbb{B}$
- Our theorem proves the existence of a threshold for a certain cost function (the maximal weight of a one-step change $H_{n, i-1}\left[S_{i}\right]$). Could we consider other weight functions such as
- The p-norm of the one-step changes, instead of the ∞-norm?
- The size of a one-step change, instead of the weight?
- Our theorem proves the existence of a specific optimization with respect to $\left(H_{n}, \lambda\right)$. What happens now if we consider a random sequence $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$? If we keep generating new subsets for as long as we want, do we eventually reach the minimum spanning tree?

Some future directions:

- Our theorem states that, for H_{n} and $\lambda>1$, asymptotically there exists an optimization $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$. Now, what can we say about k ? What is its minimal possible value? $\ldots \mathbb{B}$
- Our theorem proves the existence of a threshold for a certain cost function (the maximal weight of a one-step change $H_{n, i-1}\left[S_{i}\right]$). Could we consider other weight functions such as
- The p-norm of the one-step changes, instead of the ∞-norm?
- The size of a one-step change, instead of the weight?
- Our theorem proves the existence of a specific optimization with respect to $\left(H_{n}, \lambda\right)$. What happens now if we consider a random sequence $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$? If we keep generating new subsets for as long as we want, do we eventually reach the minimum spanning tree?iv

Some future directions:

- Our theorem states that, for H_{n} and $\lambda>1$, asymptotically there exists an optimization $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$. Now, what can we say about k ? What is its minimal possible value? $\ldots \mathbb{B}$
- Our theorem proves the existence of a threshold for a certain cost function (the maximal weight of a one-step change $H_{n, i-1}\left[S_{i}\right]$). Could we consider other weight functions such as
- The p-norm of the one-step changes, instead of the ∞-norm?
- The size of a one-step change, instead of the weight?
- Our theorem proves the existence of a specific optimization with respect to $\left(H_{n}, \lambda\right)$. What happens now if we consider a random sequence $\mathbb{S}=\left(S_{1}, \ldots, S_{k}\right)$? If we keep generating new subsets for as long as we want, do we eventually reach the minimum spanning tree? iv
\rightarrow Let me focus on the first question, in particular the reason why it is \mathbb{B} and not \mathbb{B}.

From now on, U_{1}, \ldots, U_{n} are independent uniforms and \mathcal{P}_{n} is the set of partitions of $[n]$.

From now on, U_{1}, \ldots, U_{n} are independent uniforms and \mathcal{P}_{n} is the set of partitions of $[n]$. For a partition $\left(S_{1}, \ldots, S_{k}\right) \in \mathcal{P}_{n}$, we refer to k as its size and $\max _{j}\left\{\sum_{i \in S_{j}} U_{i}\right\}$ as its weight.

Open problem

From now on, U_{1}, \ldots, U_{n} are independent uniforms and \mathcal{P}_{n} is the set of partitions of $[n]$. For a partition $\left(S_{1}, \ldots, S_{k}\right) \in \mathcal{P}_{n}$, we refer to k as its size and $\max _{j}\left\{\sum_{i \in S_{j}} U_{i}\right\}$ as its weight.

Pre-question

Open problem

From now on, U_{1}, \ldots, U_{n} are independent uniforms and \mathcal{P}_{n} is the set of partitions of $[n]$. For a partition $\left(S_{1}, \ldots, S_{k}\right) \in \mathcal{P}_{n}$, we refer to k as its size and $\max _{j}\left\{\sum_{i \in S_{j}} U_{i}\right\}$ as its weight.

Pre-question

What is (asymptotically) the minimal size of a partition of weight at most 1 ?

Open problem

From now on, U_{1}, \ldots, U_{n} are independent uniforms and \mathcal{P}_{n} is the set of partitions of $[n]$.
For a partition $\left(S_{1}, \ldots, S_{k}\right) \in \mathcal{P}_{n}$, we refer to k as its size and $\max _{j}\left\{\sum_{i \in S_{j}} U_{i}\right\}$ as its weight.

Pre-question

What is (asymptotically) the minimal size of a partition of weight at most 1 ?

It is actually not too hard to prove that this should be of order $n / 2$: we can almost exactly pair the uniforms U_{1}, \ldots, U_{n} so that the sum of each pair is less than 1 .

Open problem

From now on, U_{1}, \ldots, U_{n} are independent uniforms and \mathcal{P}_{n} is the set of partitions of $[n]$.
For a partition $\left(S_{1}, \ldots, S_{k}\right) \in \mathcal{P}_{n}$, we refer to k as its size and $\max _{j}\left\{\sum_{i \in S_{j}} U_{i}\right\}$ as its weight.

Pre-question

What is (asymptotically) the minimal size of a partition of weight at most 1 ?

It is actually not too hard to prove that this should be of order $n / 2$: we can almost exactly pair the uniforms U_{1}, \ldots, U_{n} so that the sum of each pair is less than 1 .
\rightarrow We are now interested in the behaviour of the size when we put more constraints on the partition.

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
S_{1}=\{3,4\}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
S_{1}=\{3,4\}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
S_{1}=\{3,4\}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
\begin{aligned}
& S_{1}=\{3,4\} \\
& S_{2}=\{2,5\}
\end{aligned}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
\begin{aligned}
& S_{1}=\{3,4\} \\
& S_{2}=\{2,5\}
\end{aligned}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
\begin{aligned}
& S_{1}=\{3,4\} \\
& S_{2}=\{2,5\}
\end{aligned}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
\begin{aligned}
& S_{1}=\{3,4\} \\
& S_{2}=\{2,5\} \\
& S_{3}=\{7,8\}
\end{aligned}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
\begin{aligned}
& S_{1}=\{3,4\} \\
& S_{2}=\{2,5\} \\
& S_{3}=\{7,8\}
\end{aligned}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
\begin{aligned}
& S_{1}=\{3,4\} \\
& S_{2}=\{2,5\} \\
& S_{3}=\{7,8\}
\end{aligned}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
\begin{aligned}
& S_{1}=\{3,4\} \\
& S_{2}=\{2,5\} \\
& S_{3}=\{7,8\} \\
& S_{4}=\{1,6,9\}
\end{aligned}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

$$
\begin{aligned}
& S_{1}=\{3,4\} \\
& S_{2}=\{2,5\} \\
& S_{3}=\{7,8\} \\
& S_{4}=\{1,6,9\}
\end{aligned}
$$

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

Question

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

Question

What is (asymptotically) the minimal size of a line-connected partition of weight at most 1 ?

Open problem

Call line-connected partition a partition $\left(S_{1}, \ldots, S_{k}\right)$ where S_{i} is an interval of $[n] \backslash\left(S_{1} \cup \ldots \cup S_{i-1}\right)$.
A line partition can be constructed as follows.

- See U_{1}, \ldots, U_{n} as aligned on a line.
- Remove a segment from this line.
- Reconnect the two ends of the removed segment and repeat the first step.

Question

What is (asymptotically) the minimal size of a line-connected partition of weight at most 1 ? In particular, is it approximately $n / 2$ as it was the case for general partitions?

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition $\left(S_{1}, \ldots, S_{k}\right)$ of weight at most 1 , we have

$$
k=\sum_{j=1}^{k} 1 \geq \sum_{j=1}^{k} \sum_{i \in S_{j}} U_{i}=\sum_{i \in[n]} U_{i} \simeq \frac{n}{2} .
$$

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition $\left(S_{1}, \ldots, S_{k}\right)$ of weight at most 1 , we have

$$
k=\sum_{j=1}^{k} 1 \geq \sum_{j=1}^{k} \sum_{i \in S_{j}} U_{i}=\sum_{i \in[n]} U_{i} \simeq \frac{n}{2} .
$$

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special case of interval partitions (which are also themselves line-connected partitions, but easier to study), computations seems to show that the asymptotic size is of order $n /(2-\alpha)$ for some $\alpha>0$.

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition $\left(S_{1}, \ldots, S_{k}\right)$ of weight at most 1 , we have

$$
k=\sum_{j=1}^{k} 1 \geq \sum_{j=1}^{k} \sum_{i \in S_{j}} U_{i}=\sum_{i \in[n]} U_{i} \simeq \frac{n}{2} .
$$

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special case of interval partitions (which are also themselves line-connected partitions, but easier to study), computations seems to show that the asymptotic size is of order $n /(2-\alpha)$ for some $\alpha>0$.
\rightarrow I personally tend to believe that the correct behaviour is $n / 2$ for line-connected partitions.

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition $\left(S_{1}, \ldots, S_{k}\right)$ of weight at most 1 , we have

$$
k=\sum_{j=1}^{k} 1 \geq \sum_{j=1}^{k} \sum_{i \in S_{j}} U_{i}=\sum_{i \in[n]} U_{i} \simeq \frac{n}{2} .
$$

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special case of interval partitions (which are also themselves line-connected partitions, but easier to study), computations seems to show that the asymptotic size is of order $n /(2-\alpha)$ for some $\alpha>0$.
\rightarrow I personally tend to believe that the correct behaviour is $n / 2$ for line-connected partitions.
\rightarrow I am biased because this would simplify the general results I want to study.

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition $\left(S_{1}, \ldots, S_{k}\right)$ of weight at most 1 , we have

$$
k=\sum_{j=1}^{k} 1 \geq \sum_{j=1}^{k} \sum_{i \in S_{j}} U_{i}=\sum_{i \in[n]} U_{i} \simeq \frac{n}{2} .
$$

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special case of interval partitions (which are also themselves line-connected partitions, but easier to study), computations seems to show that the asymptotic size is of order $n /(2-\alpha)$ for some $\alpha>0$.
\rightarrow I personally tend to believe that the correct behaviour is $n / 2$ for line-connected partitions.
\rightarrow I am biased because this would simplify the general results I want to study.
\rightarrow A proof that it is not $n / 2$ but rather $n /(2-\beta)$ for some $\beta>0$ is also welcome.

Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition $\left(S_{1}, \ldots, S_{k}\right)$ of weight at most 1 , we have

$$
k=\sum_{j=1}^{k} 1 \geq \sum_{j=1}^{k} \sum_{i \in S_{j}} U_{i}=\sum_{i \in[n]} U_{i} \simeq \frac{n}{2} .
$$

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special case of interval partitions (which are also themselves line-connected partitions, but easier to study), computations seems to show that the asymptotic size is of order $n /(2-\alpha)$ for some $\alpha>0$.
\rightarrow I personally tend to believe that the correct behaviour is $n / 2$ for line-connected partitions.
\rightarrow I am biased because this would simplify the general results I want to study.
\rightarrow A proof that it is not $n / 2$ but rather $n /(2-\beta)$ for some $\beta>0$ is also welcome.
\rightarrow It would however lead to further questions...

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal value of k such that there exists an optimization of k sets with respect to $\left(H_{n}, \lambda\right)$?

The previous problem arises when considering the speed of an optimization: what is the minimal value of k such that there exists an optimization of k sets with respect to $\left(H_{n}, \lambda\right)$?

We conjecture that the speed with respect to $\left(H_{n}, \lambda\right)$ should be of order $w\left(H_{n}\right) / \lambda \simeq\left|E\left(H_{n}\right)\right| / 2 \lambda$ and believe to have the proof when:

The previous problem arises when considering the speed of an optimization: what is the minimal value of k such that there exists an optimization of k sets with respect to $\left(H_{n}, \lambda\right)$?

We conjecture that the speed with respect to $\left(H_{n}, \lambda\right)$ should be of order $w\left(H_{n}\right) / \lambda \simeq\left|E\left(H_{n}\right)\right| / 2 \lambda$ and believe to have the proof when:

- λ diverges to ∞ with n.

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal value of k such that there exists an optimization of k sets with respect to $\left(H_{n}, \lambda\right)$?

We conjecture that the speed with respect to $\left(H_{n}, \lambda\right)$ should be of order $w\left(H_{n}\right) / \lambda \simeq\left|E\left(H_{n}\right)\right| / 2 \lambda$ and believe to have the proof when:

- λ diverges to ∞ with n.
- H_{n} has a diverging density: $\left|E\left(H_{n}\right)\right| /\left|V\left(H_{n}\right)\right| \rightarrow \infty$.

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal value of k such that there exists an optimization of k sets with respect to $\left(H_{n}, \lambda\right)$?

We conjecture that the speed with respect to $\left(H_{n}, \lambda\right)$ should be of order $w\left(H_{n}\right) / \lambda \simeq\left|E\left(H_{n}\right)\right| / 2 \lambda$ and believe to have the proof when:

- λ diverges to ∞ with n.
- H_{n} has a diverging density: $\left|E\left(H_{n}\right)\right| /\left|V\left(H_{n}\right)\right| \rightarrow \infty$.
- H_{n} is a star.

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal value of k such that there exists an optimization of k sets with respect to $\left(H_{n}, \lambda\right)$?

We conjecture that the speed with respect to $\left(H_{n}, \lambda\right)$ should be of order $w\left(H_{n}\right) / \lambda \simeq\left|E\left(H_{n}\right)\right| / 2 \lambda$ and believe to have the proof when:

- λ diverges to ∞ with n.
- H_{n} has a diverging density: $\left|E\left(H_{n}\right)\right| /\left|V\left(H_{n}\right)\right| \rightarrow \infty$.
- H_{n} is a star.

In general, the speed with respect to $\left(H_{n}, \lambda\right)$ is closely related to the size of a special type of partition built from H_{n} of weight at most λ, and the case of the line once again proves to be the most difficult one to study...

Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal value of k such that there exists an optimization of k sets with respect to $\left(H_{n}, \lambda\right)$?

We conjecture that the speed with respect to $\left(H_{n}, \lambda\right)$ should be of order $w\left(H_{n}\right) / \lambda \simeq\left|E\left(H_{n}\right)\right| / 2 \lambda$ and believe to have the proof when:

- λ diverges to ∞ with n.
- H_{n} has a diverging density: $\left|E\left(H_{n}\right)\right| /\left|V\left(H_{n}\right)\right| \rightarrow \infty$.
- H_{n} is a star.

In general, the speed with respect to $\left(H_{n}, \lambda\right)$ is closely related to the size of a special type of partition built from H_{n} of weight at most λ, and the case of the line once again proves to be the most difficult one to study...

To fully solve the "speed problem", we would further need to understand the size of a line-connected partition of weight at most λ, which should not be substantially harder than the case $\lambda=1$.

- Addario-Berry, L., Barrett, J., \& Corsini, B. (2022). Finding minimum spanning trees via local improvements. arXiv preprint arXiv:2205.05075. (ABBC'22)
- Addario-Berry, L., Broutin, N., \& Reed, B. (2006). The diameter of the minimum spanning tree of a complete graph. Discrete Mathematics \& Theoretical Computer Science, (Proceedings). (ABBR'06)
- Frieze, A. M. (1985). On the value of a random minimum spanning tree problem. Discrete Applied Mathematics, 10(1), 47-56. (F'85)

This work was partially supported by the Institut des Sciences Mathématiques (ISM).

