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Motivation

( The fundamental question

When considering real-life networks, it is often impossible to access the whole graph at once.
So if we further want to modify the graph, this becomes even more complicated...

Assume we have a target property that we want our network to satisfy; can we operate “local”
modifications eventually leading to the global graph satisfying this property?
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Motivation

Modernizing Canada’s Aging Power Grid

by Powertec Electric | Apr 20, 2019 | Electrical Power, Electricians, Hiring Electricians | 0 comments

In the 70s and 80s, there was a lot of
investment into electrical infrastructure in
Canada. New technologies were demanding
higher electrical capacity in homes, and the
growth of Canada's large urban centres
meant that demand was sure to remain high.
The surge of investment into the grid was so
monumental that supply actually ended up
outweighing demand, and electricity could
be bought on the cheap for many years.
These investments have sustained us for

quite some time, but we may now be
reaching the breaking paint of our electric grid.

Source: powertec.ca
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Out setup

In the case of the electrical grid, we
e were operating on a 2-dimensional Euclidian plan;
e started with a given network on this plan;
e had a yearly budget allowing us to modify only parts of our graph; and

e were hoping to make it become “more robust”.

We adapt this example and now consider

e nodes with iid distances;
e an arbitrary starting graph;
e a budget corresponding to the weight of the graph; and

e the minimum spanning tree as the target graph.
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Let K, = (K,,U) be the complete weighted graph with independent UNIFORM([0, 1]) random
edge weights. Let H,, be a spanning subgraph of K, and A > 0 be a positive number.

For any sequence of sets S = (51, ..., Sk), define (H,,...,H,}) as follows.
e H,o= H,; and

e H, ; is obtained by replacing H, ;_1|S;| on H, ;1 by its (local) minimum spanning tree.

( Definition (Optimization)
Say that S = (S,...,S)) is an optimization with respect to (H,,, \) if

« H, j is the (global) minimum spanning tree of K,,; and
« for any ¢, the weight of H,,;_1[S;] is less than \.
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into the (global) minimum spanning tree on K, by inductively replacing subgraphs of weight less
than X into (local) optimally weighted trees.

e In the previous example, there exists an optimization with respect to (H, 1).

e If H, is not a tree, its number of edges will regularly decrease in the process.

e This process can always end up on a “local minimum” (by adding more sets to the sequence).
e Given K, and H,, there exists a threshold A, = A\ (Hj; K,,) such that

o if A < A¢nr, then there exists no optimization with respect to (H,,, \); and
o if X\ > Atnr, then there exists an optimization with respect to (H,,, A).

o It is easy to check that Ay, is larger than the heaviest edge in H,, not in the (global) minimum
spanning tree and smaller than the total weight of H,,.

— We hope to characterize \;,, when n is large for various choices of H,,.
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The ONE result

( Theorem (Addario-Berry, Barrett, ¥ [2022])

Let K,, = (K, U) be the complete weighted graph with independent uniform edge weights, H,, be
a spanning subgraph of K, chosen independently of U, and € > 0.

Then, with high probability as n goes to infinity:
« there exists an optimization with respect to (H,, 1+ ¢); and
« there does not exist any optimization with respect to (H,,1 — ¢).

— There is a universal threshold at 1, no matter the structure (or density) of H,,.
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The lower bound is actually straightforward to check.
e Since H, is chosen independently of U, it has an edge e with weight 1 — op(1) > 1 — €.
o This edge is likely not in the (global) MST.
e If none of the sets contain both ends of e, then e belongs to the final graph.

e Otherwise, the first subgraph containing e has weight at least 1 — €.

— There does not exist an optimization with respect to (H,,,1 — ¢).

| now focus on the upper bound, more technical, but more constructive.

— Given a graph H,,, can we find a sequence of sets transforming H,, into the (global) MST?

— Can we show that the maximal weight of these sets is not too large (i.e. <1+ ¢)?
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Upper bound proof structure

The proof of the upper bound can be decomposed in three parts.
e The “eating algorithm”, a method for locally growing MST.

e A Ramsey-like argument to reduce the study from any H,, to only three cases.

e A case-by-case proof for these three cases.

— The last argument is the most complex and detail-oriented.

— | will only explain the first two points.

o For simplicity, | now drop the subscript n on H,,.
o | will keep assuming that things are “large enough”.

o Every pair of nodes has an independent uniform weight, even those not part of H.
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Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph

by its (local) MST.
— Can we extend this MST so that it keeps “eating” nodes?

— |If we have a MST on n — 1 nodes, can we extend it to n nodes?

Useful facts about the MST on K,:

o lIts total weight is ((3) + op(1). (F’85)
o lIts edges have weight Op(logn/n). (ABBC’22)
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Imagine the scenario where we started from H arbitrary and managed to replace a large subgraph

by its (local) MST.
— Can we extend this MST so that it keeps “eating” nodes?

— |If we have a MST on n — 1 nodes, can we extend it to n nodes?

Useful facts about the MST on K,;:
o lIts total weight is ((3) + op(1). (F’85)
o lIts edges have weight Op(logn/n). (ABBC’22)
o Its diameter is Op(n'/?). (ABBR’06) fe
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The eating algorithm:(easy case)

Consider the following (easier) scenario.
— We have the MST on n — 1 nodes.
— The n-th node is attached to it via a single edge e.

If we consider the set [n], we obtain the (global) MST in one step.

— The weight of this step is U, + ((3) < 1+ ((3).
— We need to do better! n

Instead we consider the paths fromnto 1,2,...,n — 1.

— The weight of a path in the MST is op(1).
— The path from n to ¢ has weight U, + op(1) < 1 + €.
— After considering all such paths, we have the (global) MST.

A\ Where is the problem? The weight of the paths might change during the process!
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— They are not unique, so we need to choose carefully.
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The eating algorithm (hard case)

Consider now the following (harder) scenario.
— We have the MST on n — 1 nodes.
— The n-th node is attached to it via multiple edges.

If we consider the set [n], we obtain the (global) MST in one step.
— The weight of this step is < deg(n) + ((3).

— This is not even bounded anymore! n

We consider again the paths fromnto 1,2,....,n — 1.

— They are not unique, so we need to choose carefully.
— After considering the paths, we have a supergraph of the MST.
— We remove extra edges by considering cycles (carefully again).

— Luckily, we obtain steps with weight 1 + op(1) again.
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From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.
e a large graph either has a large degree or a large diameter;
o if it has a large diameter, then it contains a long (induced) line.

o if it has a large degree, then the neighbours of this high degree either have:

o a large clique, thus creating a large (induced) complete graph, or

o a large independent set, thus creating a large (induced) star.

Thus, if we can transform a large complete graph, star, and line into their MST by only changing
subgraphs of weight 1 + op(1), then we can do the same for any graph.
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The three main cases

From the eating algorithm, if we manage to replace a large subgraph by its (local) MST, then we
can expand it until reaching the (global) MST.

We use this method to reduce H to one of three possibilities: the complete graph, a star, or a line.

e a large graph either has a large degree or a large diameter;
e if it has a large diameter, then it contains a long (induced) line.

o if it has a large degree, then the neighbours of this high degree either have:

o a large clique, thus creating a large (induced) complete graph, or

o a large independent set, thus creating a large (induced) star.

Thus, if we can transform a large complete graph, star, and line into their MST by only changing
subgraphs of weight 1 + op(1), then we can do the same for any graph.

A We need to be careful on the dependency with the edge weights U.
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o For the complete graph and the star, it is quite easy, since all nodes are close to each other.
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— To conclude the proof, we construct sequences of sets on those three cases.

o For the complete graph and the star, it is quite easy, since all nodes are close to each other.

o The line is more complicated, since we have to start with a large subline of small weights,
but then the corresponding MST is not independent of the weights.
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Concluding the proof

o With the eating algorithm, we can grow MSTs within H (assuming “some" independence).

e This allows us to consider only three different cases: the complete graph, a star, or a line.

— To conclude the proof, we construct sequences of sets on those three cases.

o For the complete graph and the star, it is quite easy, since all nodes are close to each other.

o The line is more complicated, since we have to start with a large subline of small weights,
but then the corresponding MST is not independent of the weights.

— In that case, the eating algorithm still works, but the proof is more tedious.
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Some future directions:
e Qur theorem states that, for H, and A > 1, asymptotically there exists an optimization
S = (S1,...,Sk). Now, what can we say about £? What is its minimal possible value? ...

o Our theorem proves the existence of a threshold for a certain cost function (the maximal weight
of a one-step change H,,;_1[S;]). Could we consider other weight functions such as

o The p-norm of the one-step changes, instead of the co-norm? ... ... ............ ... g

o The size of a one-step change, instead of the weight? ... ... ... ... ... .. ... ...... .. @

e Our theorem proves the existence of a specific optimization with respect to (H,, A). What
happens now if we consider a random sequence S = (51, ...,.5;)7 If we keep generating new
subsets for as long as we want, do we eventually reach the minimum spanning tree? .....

— Let me focus on the first question, in particular the reason why it is 3 and not &.
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From now on, Uy, ..., U, are independent uniforms and P, is the set of partitions of [n].
For a partition (51, .., 5k) € Pn, we refer to k as its size and max;{} ;.5 Ui} as its weight.

( Pre-question

What is (asymptotically) the minimal size of a partition of weight at most 17

It is actually not too hard to prove that this should be of order n/2: we can almost exactly pair the
uniforms Uy, ..., U, so that the sum of each pair is less than 1.
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Open problem

From now on, Uy, ..., U, are independent uniforms and P, is the set of partitions of [n].
For a partition (51, .., 5k) € Pn, we refer to k as its size and max;{} ;g Ui} as its weight.

( Pre-question

What is (asymptotically) the minimal size of a partition of weight at most 17

It is actually not too hard to prove that this should be of order n/2: we can almost exactly pair the
uniforms Uy, ..., U, so that the sum of each pair is less than 1.

— We are now interested in the behaviour of the size when we put more constraints on the

partition.
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A line partition can be constructed as follows.

o See Uy,...,U, as aligned on a line.
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.

o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.

S1:{374}
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o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.

S1={3,4}

U1 U2 U5 UG U7 U8 U9 SQ — {2 5}
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.

S1={3,4}
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.

S1:{374}
.Ul.UG. i 322{275}
332{778}
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.

S) = {3,4
Ui Us Us S; = iz 5{
® ® ® ® Sg _ {77 8}
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.

S) = {3,4

Ui s Us S; = iz 5%

® ® ® ® 53 _ {778}
Sy = {17679}
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.

S1={3,4}
Sy =1{2,5}
S ={7,8}
Sy ={1,6,9}
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.

( Question
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.

( Question

What is (asymptotically) the minimal size of a line-connected partition of weight at most 17
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Open problem

Call line-connected partition a partition (51, . . ., S;) where S; is an interval of [n]\ (S1U...US;_1).

A line partition can be constructed as follows.
o See Uy,...,U, as aligned on a line.
e Remove a segment from this line.

e Reconnect the two ends of the removed segment and repeat the first step.

( Question

What is (asymptotically) the minimal size of a line-connected partition of weight at most 17
In particular, is it approximately n/2 as it was the case for general partitions?
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Open problem: some progress (or not)
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Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (51, ..., S)) of weight
at most 1, we have
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Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (51, ..., S)) of weight
at most 1, we have

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 — a) for some a > 0.
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Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 — a) for some a > 0.

— | personally tend to believe that the correct behaviour is n/2 for line-connected partitions.

— | am biased because this would simplify the general results | want to study.
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Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (51, ..., S)) of weight
at most 1, we have

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 — a) for some a > 0.

— | personally tend to believe that the correct behaviour is n/2 for line-connected partitions.
— | am biased because this would simplify the general results | want to study.
— A proof that it is not n/2 but rather n/(2 — 3) for some g > 0 is also welcome.
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Open problem: some progress (or not)

It is actually rather easy to prove the lower bound. Indeed, for a partition (51, ..., S)) of weight
at most 1, we have

Sadly, the upper bound proves to be more difficult to obtain. For example, if considering the special
case of interval partitions (which are also themselves line-connected partitions, but easier to study),
computations seems to show that the asymptotic size is of order n/(2 — a) for some a > 0.

— | personally tend to believe that the correct behaviour is n/2 for line-connected partitions.
— | am biased because this would simplify the general results | want to study.
— A proof that it is not n/2 but rather n/(2 — 3) for some g > 0 is also welcome.

— It would however lead to further questions...

Local weighted optimizations and open problems Future work Benoit Corsini



Open problem: motivation
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (H,,, \)?
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (H,,, \)?

We conjecture that the speed with respect to (H,,, A) should be of order w(H,)/\ ~ |E(H,)|/2\
and believe to have the proof when:
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e ) diverges to oo with n.
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (H,,, \)?

We conjecture that the speed with respect to (H,,, A) should be of order w(H,)/\ ~ |E(H,)|/2\
and believe to have the proof when:

e ) diverges to oo with n.
e H, has a diverging density: |E(H,)|/|V(H,)| — oo.
e H, is a star.

In general, the speed with respect to (H,,, \) is closely related to the size of a special type of
partition built from H,, of weight at most A, and the case of the line once again proves to be the
most difficult one to study...
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Open problem: motivation

The previous problem arises when considering the speed of an optimization: what is the minimal
value of k such that there exists an optimization of k sets with respect to (H,,, \)?

We conjecture that the speed with respect to (H,,, A) should be of order w(H,)/\ ~ |E(H,)|/2\
and believe to have the proof when:

e ) diverges to oo with n.
e H, has a diverging density: |E(H,)|/|V(H,)| — oo.
e H, is a star.

In general, the speed with respect to (H,,, \) is closely related to the size of a special type of
partition built from H,, of weight at most A, and the case of the line once again proves to be the
most difficult one to study...

To fully solve the “speed problem”, we would further need to understand the size of a line-connected
partition of weight at most A, which should not be substantially harder than the case \ = 1.
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