Local limit of Prim's algorithm

join work with R. Gündlach and R. van der Hofstad

€ Local limit

€ Local limit

Prim's algorithm

Percolation clusters

→ The sequence of tori $((\mathbb{Z}/n\mathbb{Z})^d)_{n\geq 1}$ converges towards \mathbb{Z}^d .

→ The sequence of tori $((\mathbb{Z}/n\mathbb{Z})^d)_{n\geq 1}$ converges towards \mathbb{Z}^d .

→ Almost: *d*-regular graphs with diverging girth converge to the infinite *d*-ary tree.

Q Local limit

Prim's algorithm

Percolation clusters

Minimum spanning tree

→ Can we find an "easy" way to compute the minimum spanning tree?

Prim's algorithm

• Start with a tree composed of a single node, arbitrarily chosen from the graph.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

 \rightarrow This algorithm works because of the following key proposition.

- Start with a tree composed of a single node, arbitrarily chosen from the graph.
- Given the current tree, grow it by adding the edge on its boundary of smallest weight.

 \rightarrow This algorithm works because of the following key proposition.

The edges of the minimum spanning tree are exactly those that are never the heaviest on any cycle.

Proposition

Prim's algorithm

Properties of Prim's algorithms:

Properties of Prim's algorithms:

• It constructs a sequence of trees starting from any given root.
- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

 \rightarrow The minimum spanning tree is the entire line.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

$\cdots \bigcirc -5 - \bigcirc -3 - \bigcirc -1 - \bigcirc -0 - \bigcirc -2 - \bigcirc -4 - \bigcirc -6 - \bigcirc \cdots$

- \rightarrow The minimum spanning tree is the entire line.
- \rightarrow Prim's algorithm also explores the entire line.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

 \rightarrow The minimum spanning tree is the entire line.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

·····O-8-O-4-O-2-O-1-O-0.5-O-0.25-O0.125O····

- \rightarrow The minimum spanning tree is the entire line.
- \rightarrow Prim's algorithm only explores the right portion of the line.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.
- **Q:** What happens when G is infinite?

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.
- **Q:** What happens when G is infinite?

→ The minimum spanning tree is not well-defined (or is a forest).

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.
- **Q:** What happens when G is infinite?

- \rightarrow The minimum spanning tree is not well-defined (or is a forest).
- \rightarrow Prim's algorithm only explores the line on which it starts.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

Q: What happens when *G* is infinite?

→ The minimum spanning tree does not always exist, but the *minimum spanning forest* does.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

Q: What happens when *G* is infinite?

→ The minimum spanning tree does not always exist, but the *minimum spanning forest* does.
→ Prim's algorithm is still well-defined, even with an infinite number of steps.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

- → The minimum spanning tree does not always exist, but the *minimum spanning forest* does.
- → Prim's algorithm is still well-defined, even with an infinite number of steps.
- \rightarrow The output of Prim's algorithm is a subtree of the minimum spanning forest.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

- → The minimum spanning tree does not always exist, but the *minimum spanning forest* does.
- → Prim's algorithm is still well-defined, even with an infinite number of steps.
- \rightarrow The output of Prim's algorithm is a subtree of the minimum spanning forest.
 - This subtree is not necessarily a tree of the minimum spanning forest.

- It constructs a sequence of trees starting from any given root.
- If the graph has *n* vertices, the *n*-th tree of the algorithm is the minimum spanning tree.

- → The minimum spanning tree does not always exist, but the *minimum spanning forest* does.
- → Prim's algorithm is still well-defined, even with an infinite number of steps.
- \rightarrow The output of Prim's algorithm is a subtree of the minimum spanning forest.
 - This subtree is not necessarily a tree of the minimum spanning forest.
 - It is often referred to as the *invasion percolation cluster*.

Q Local limit

Percolation clusters

• $p = \dots$

• $p \in [0,1]$

• p = 1.00

Given a percolation level p, we now consider the connected components of the graph, in decreasing order of sizes: $C^{(1)}(p), C^{(2)}(p), \ldots$

• p = 1.00

Given a weighted graph, the *percolated subgraph at level* p is the graph obained by only keeping edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing order of sizes: $C^{(1)}(p), C^{(2)}(p), \ldots$

Given a percolation level p, we now consider the connected components of the graph, in decreasing order of sizes: $C^{(1)}(p), C^{(2)}(p), \ldots$

Definition (proper graph)

Given a percolation level p, we now consider the connected components of the graph, in decreasing order of sizes: $C^{(1)}(p), C^{(2)}(p), \ldots$

Definition (proper graph)

A sequence of (finite) graphs $(G_n)_{n\geq 1}$ is *proper* if there exists $\theta : [0,1] \rightarrow [0,1]$ such that

$$\lim_{n \to \infty} \frac{\left| C_n^{(1)}(p) \right|}{n} = \theta(p); \qquad \lim_{n \to \infty} \frac{\left| C_n^{(2)}(p) \right|}{n} = 0.$$

Given a percolation level p, we now consider the connected components of the graph, in decreasing order of sizes: $C^{(1)}(p), C^{(2)}(p), \ldots$

Definition (proper graph)

A sequence of (finite) graphs $(G_n)_{n\geq 1}$ is *proper* if there exists $\theta : [0,1] \rightarrow [0,1]$ such that

$$\lim_{n \to \infty} \frac{|C_n^{(1)}(p)|}{n} = \theta(p); \qquad \lim_{n \to \infty} \frac{|C_n^{(2)}(p)|}{n} = 0.$$

Furthermore, θ should be continuous on $(p_c, 1] = \theta^{-1}((0, 1])$.

Percolation clusters

Q: What happens when the graph is infinite?

 \rightarrow The clusters $C^{(1)}(p), C^{(2)}(p), \ldots$ are usually not well-defined.

 \twoheadrightarrow The clusters $C^{(1)}(p), C^{(2)}(p), \ldots$ are usually not well-defined.

Lucky for us, we always consider infinite graphs coupled with a root ρ .

 \rightarrow The clusters $C^{(1)}(p), C^{(2)}(p), \ldots$ are usually not well-defined.

Lucky for us, we always consider infinite graphs coupled with a root ρ .

 \rightarrow Instead of ordering clusters by sizes, we only consider the cluster containing the root: $C_{\rho}(p)$.

 \rightarrow The clusters $C^{(1)}(p), C^{(2)}(p), \ldots$ are usually not well-defined.

Lucky for us, we always consider infinite graphs coupled with a root ρ .

- \rightarrow Instead of ordering clusters by sizes, we only consider the cluster containing the root: $C_{\rho}(p)$.
- \rightarrow We are interested in whether $C_{\rho}(p)$ is infinite or not.

 \rightarrow The clusters $C^{(1)}(p), C^{(2)}(p), \ldots$ are usually not well-defined.

Lucky for us, we always consider infinite graphs coupled with a root ρ .

- \rightarrow Instead of ordering clusters by sizes, we only consider the cluster containing the root: $C_{\rho}(p)$.
- \rightarrow We are interested in whether $C_{\rho}(p)$ is infinite or not.
- → Since the underlying graph is random, we study $\mathbb{P}(|C_{\rho}(p)| = \infty)$ seen as a function of $p \in [0, 1]$.

 \rightarrow The clusters $C^{(1)}(p), C^{(2)}(p), \ldots$ are usually not well-defined.

Lucky for us, we always consider infinite graphs coupled with a root ρ .

- \rightarrow Instead of ordering clusters by sizes, we only consider the cluster containing the root: $C_{\rho}(p)$.
- \rightarrow We are interested in whether $C_{\rho}(p)$ is infinite or not.
- → Since the underlying graph is random, we study $\mathbb{P}(|C_{\rho}(p)| = \infty)$ seen as a function of $p \in [0, 1]$.

Definition (proper graph)

 \rightarrow The clusters $C^{(1)}(p), C^{(2)}(p), \ldots$ are usually not well-defined.

Lucky for us, we always consider infinite graphs coupled with a root ρ .

- \rightarrow Instead of ordering clusters by sizes, we only consider the cluster containing the root: $C_{\rho}(p)$.
- \rightarrow We are interested in whether $C_{\rho}(p)$ is infinite or not.
- → Since the underlying graph is random, we study $\mathbb{P}(|C_{\rho}(p)| = \infty)$ seen as a function of $p \in [0, 1]$.

Definition (proper graph)

A (infinite) graph G is *proper* if $\mathbb{P}(|C_{\rho}(p)| = \infty) > 0$ implies that $|C_{v}(p)| = \infty$ for some $v \in G$.

A pair composed of a sequence of finite graphs $(G_n)_{n\geq 1}$ and an infinite graph G is *proper* if both elements are proper and G_n converges locally towards G.

A pair composed of a sequence of finite graphs $(G_n)_{n\geq 1}$ and an infinite graph G is *proper* if both elements are proper and G_n converges locally towards G. In that case, we further have that

$$\theta(p) := \lim_{n \to \infty} \frac{\left| C_n^{(1)}(p) \right|}{n} = \mathbb{P}\left(\left| C_\rho(p) \right| = \infty \right).$$

A pair composed of a sequence of finite graphs $(G_n)_{n\geq 1}$ and an infinite graph G is *proper* if both elements are proper and G_n converges locally towards G. In that case, we further have that

$$\theta(p) := \lim_{n \to \infty} \frac{\left| C_n^{(1)}(p) \right|}{n} = \mathbb{P}\left(\left| C_\rho(p) \right| = \infty \right).$$

 \rightarrow The equality states that a node chosen at random in G_n belongs to the largest component (at level p) with the same probability that we observe an infinite component (at level p) in G.

A pair composed of a sequence of finite graphs $(G_n)_{n\geq 1}$ and an infinite graph G is *proper* if both elements are proper and G_n converges locally towards G. In that case, we further have that

$$\theta(p) := \lim_{n \to \infty} \frac{\left| C_n^{(1)}(p) \right|}{n} = \mathbb{P}\left(\left| C_\rho(p) \right| = \infty \right).$$

- → The equality states that a node chosen at random in G_n belongs to the largest component (at level p) with the same probability that we observe an infinite component (at level p) in G.
- → Proper pairs can be seen as sequences of graphs and their limits for which the largest finite components exactly correspond to an infinite component in the limit.

• Most "natural" pairs of graphs and their limits are proper:

- Most "natural" pairs of graphs and their limits are proper:
 - Finite and infinite grids of any dimension.

- Most "natural" pairs of graphs and their limits are proper:
 - Finite and infinite grids of any dimension.
 - Configuration models and branching processes.

- Most "natural" pairs of graphs and their limits are proper:
 - Finite and infinite grids of any dimension.
 - Configuration models and branching processes.
 - Geometric graphs, preferential attachment graphs, Erdős-Rényi graphs, etc.

- Most "natural" pairs of graphs and their limits are proper:
 - Finite and infinite grids of any dimension.
 - $\circ~$ Configuration models and branching processes.
 - Geometric graphs, preferential attachment graphs, Erdős-Rényi graphs, etc.
- Graphs need to be purposefully constructed to be improper:

- Most "natural" pairs of graphs and their limits are proper:
 - Finite and infinite grids of any dimension.
 - $\circ~$ Configuration models and branching processes.
 - Geometric graphs, preferential attachment graphs, Erdős-Rényi graphs, etc.
- Graphs need to be purposefully constructed to be improper:
 - Attaching two sequences of graphs via one edge usually provides improper (finite) graphs.

- Most "natural" pairs of graphs and their limits are proper:
 - Finite and infinite grids of any dimension.
 - $\circ~$ Configuration models and branching processes.
 - Geometric graphs, preferential attachment graphs, Erdős-Rényi graphs, etc.
- Graphs need to be purposefully constructed to be improper:
 - Attaching two sequences of graphs via one edge usually provides improper (finite) graphs.
 - In that case, the limit could still be (infinitely) proper.

- Most "natural" pairs of graphs and their limits are proper:
 - Finite and infinite grids of any dimension.
 - $\circ~$ Configuration models and branching processes.
 - Geometric graphs, preferential attachment graphs, Erdős-Rényi graphs, etc.
- Graphs need to be purposefully constructed to be improper:
 - Attaching two sequences of graphs via one edge usually provides improper (finite) graphs.
 - In that case, the limit could still be (infinitely) proper.
 - For an improper (infinite) graph, take the limit of two sequences of graphs with different critical percolation values.

- Most "natural" pairs of graphs and their limits are proper:
 - Finite and infinite grids of any dimension.
 - $\circ~$ Configuration models and branching processes.
 - Geometric graphs, preferential attachment graphs, Erdős-Rényi graphs, etc.
- Graphs need to be purposefully constructed to be improper:
 - Attaching two sequences of graphs via one edge usually provides improper (finite) graphs.
 - In that case, the limit could still be (infinitely) proper.
 - For an improper (infinite) graph, take the limit of two sequences of graphs with different critical percolation values.
- → Attach a 3- and a 4-regular graph together to obtain an improper pair, both finite and infinite.

Q Local limit

Percolation clusters

Our result

Theorem (**†**, Gündlach, & van der Hofstad, 2025+)

Theorem (†, Gündlach, & van der Hofstad, 2025+)

Let $(G_n)_{n\geq 1}$ and G be a proper pair. Then, the output of Prim's algorithm on $(G_n)_{n\geq 1}$ after tn + o(n) steps for any $t \in [0, 1]$ converges towards the union of the invasion percolation cluster on G along with the minimum spanning forest on G percolated at level $\theta^{-1}(t)$.

Moreover, this convergence occurs as a cadlag process on the space of local convergence.

Theorem (**†**, Gündlach, & van der Hofstad, 2025+)

Let $(G_n)_{n\geq 1}$ and G be a proper pair. Then, the output of Prim's algorithm on $(G_n)_{n\geq 1}$ after tn + o(n) steps for any $t \in [0, 1]$ converges towards the union of the invasion percolation cluster on G along with the minimum spanning forest on G percolated at level $\theta^{-1}(t)$.

Moreover, this convergence occurs as a cadlag process on the space of local convergence.

 \rightarrow After $\theta(p)n$ steps, Prim's algorithm corresponds to the infinite percolation cluster and the percolated minimum spanning forest.
Theorem (**†**, Gündlach, & van der Hofstad, 2025+)

Let $(G_n)_{n\geq 1}$ and G be a proper pair. Then, the output of Prim's algorithm on $(G_n)_{n\geq 1}$ after tn + o(n) steps for any $t \in [0, 1]$ converges towards the union of the invasion percolation cluster on G along with the minimum spanning forest on G percolated at level $\theta^{-1}(t)$.

Moreover, this convergence occurs as a cadlag process on the space of local convergence.

 \rightarrow After $\theta(p)n$ steps, Prim's algorithm corresponds to the infinite percolation cluster and the percolated minimum spanning forest.

 \rightarrow Let me now explain this more instinctively.

Theorem (**†**, Gündlach, & van der Hofstad, 2025+)

Let $(G_n)_{n\geq 1}$ and G be a proper pair. Then, the output of Prim's algorithm on $(G_n)_{n\geq 1}$ after tn + o(n) steps for any $t \in [0, 1]$ converges towards the union of the invasion percolation cluster on G along with the minimum spanning forest on G percolated at level $\theta^{-1}(t)$.

Moreover, this convergence occurs as a cadlag process on the space of local convergence.

- \rightarrow After $\theta(p)n$ steps, Prim's algorithm corresponds to the infinite percolation cluster and the percolated minimum spanning forest.
- \rightarrow Let me now explain this more instinctively.

• Take a graph

 $\operatorname{Prim}(\theta(p)n) \longrightarrow \operatorname{IPC} + \operatorname{MST}(p)$

• Take a graph and its local limit

• Take a graph and its local limit both rooted at some node.

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.
- After $\simeq \theta(p)n$ steps:

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.
- After $\simeq \theta(p)n$ steps:

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.
- After $\simeq \theta(p)n$ steps:

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.
- After $\simeq \theta(p)n$ steps:
 - finite and infinite look different;

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.
- After $\simeq \theta(p)n$ steps:
 - finite and infinite look different;
 - but finite Prim equals infinite Prim combined with percolation.

- Take a graph and its local limit both rooted at some node.
- Apply percolation for some $p \in [0, 1]$ and identify the large components.
- Start running Prim's algorithm on both sides.
- After $\simeq \theta(p)n$ steps:
 - finite and infinite look different;
 - but finite Prim equals infinite Prim combined with percolation.

 \rightarrow CQFD \downarrow

- Aldous, D., & Steele, J. M. (2004). The objective method: probabilistic combinatorial optimization and local weak convergence. *Probability on Discrete Structures, 110, 1-72.*
- Corsini, B., Gündlach, R., & van der Hofstad, R. (2025+). Local limit of Prim's algorithm. *preprint.*
- van der Hofstad, R. (2024). Random Graphs and Complex Networks, Volume 2. *Cambridge University Press.*
- Prim, R. C. (1957). Shortest connection networks and some generalizations. *Bell System Technical Journal, 36(6), 1389-1401.*

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 101034253 .

Thank you!

Thank you!

Thank you!

Thank you! Thank you!

Local limit of Prim's algorithm