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Q: Is there a sequence of trees whose limit is the infinite binary tree?
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Regular tree

Q: Is there a sequence of trees whose limit is the infinite binary tree?

— Almost: d-regular graphs with diverging girth converge to the infinite d-ary tree.
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Given a weighted graph, the minimum spanning tree is the unique tree connecting all nodes which
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Minimum spanning tree

Given a weighted graph, the minimum spanning tree is the unique tree connecting all nodes which
also minimizes the total edge weights.

— Can we find an “easy” way to compute the minimum spanning tree?
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Prim’s algorithm

Prim’s algorithm is an inductive rooted methods to construct the minimum spanning tree.

e Start with a tree composed of a single node, arbitrarily chosen from the graph.

e Given the current tree, grow it by adding the edge on its boundary of smallest weight.

0.i78
e () 7 o () =3 2
0.22

e ()2 57] s mm () ].0 s

Local limit of Prim’s algorithm Prim’s algorithm Benoit Corsini



Prim’s algorithm
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Prim’s algorithm

Prim’s algorithm is an inductive rooted methods to construct the minimum spanning tree.

e Start with a tree composed of a single node, arbitrarily chosen from the graph.

e Given the current tree, grow it by adding the edge on its boundary of smallest weight.
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Prim’s algorithm

Prim’s algorithm is an inductive rooted methods to construct the minimum spanning tree.

e Start with a tree composed of a single node, arbitrarily chosen from the graph.

e Given the current tree, grow it by adding the edge on its boundary of smallest weight.
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Prim’s algorithm is an inductive rooted methods to construct the minimum spanning tree.

e Start with a tree composed of a single node, arbitrarily chosen from the graph.

e Given the current tree, grow it by adding the edge on its boundary of smallest weight.

— This algorithm works because of the following key proposition.

Local limit of Prim’s algorithm Prim’s algorithm Benoit Corsini



Prim’s algorithm

Prim’s algorithm is an inductive rooted methods to construct the minimum spanning tree.

e Start with a tree composed of a single node, arbitrarily chosen from the graph.

e Given the current tree, grow it by adding the edge on its boundary of smallest weight.

— This algorithm works because of the following key proposition.

( Proposition

The edges of the minimum spanning tree are exactly those that are never the heaviest on any cycle.
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Properties of Prim's algorithms:
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Q: What happens when G is infinite?

— The minimum spanning tree is the entire line.
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Properties of Prim's algorithms:

e |t constructs a sequence of trees starting from any given root.

e If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

— The minimum spanning tree is the entire line.

— Prim’s algorithm also explores the entire line.
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Properties of Prim's algorithms:
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Properties of Prim's algorithms:
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e If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.
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Prim’s algorithm

Properties of Prim's algorithms:
e |t constructs a sequence of trees starting from any given root.

e If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?
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— The minimum spanning tree is the entire line.

— Prim’s algorithm only explores the right portion of the line.
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Properties of Prim's algorithms:

e |t constructs a sequence of trees starting from any given root.

e If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?
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Properties of Prim's algorithms:

e |t constructs a sequence of trees starting from any given root.

e If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?
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— The minimum spanning tree is not well-defined (or is a forest).
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Prim’s algorithm

Properties of Prim's algorithms:

e |t constructs a sequence of trees starting from any given root.

e If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

25

@44@444“

— The minimum spanning tree is not well-defined (or is a forest).

— Prim’s algorithm only explores the line on which it starts.
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e If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.
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Properties of Prim's algorithms:
e |t constructs a sequence of trees starting from any given root.

e If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.
Q: What happens when G is infinite?
— The minimum spanning tree does not always exist, but the minimum spanning forest does.

— Prim’s algorithm is still well-defined, even with an infinite number of steps.

— The output of Prim’s algorithm is a subtree of the minimum spanning forest.
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e If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

— The minimum spanning tree does not always exist, but the minimum spanning forest does.
— Prim’s algorithm is still well-defined, even with an infinite number of steps.

— The output of Prim’s algorithm is a subtree of the minimum spanning forest.

o This subtree is not necessarily a tree of the minimum spanning forest.
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Prim’s algorithm

Properties of Prim's algorithms:
e |t constructs a sequence of trees starting from any given root.

e If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

— The minimum spanning tree does not always exist, but the minimum spanning forest does.
— Prim’s algorithm is still well-defined, even with an infinite number of steps.

— The output of Prim’s algorithm is a subtree of the minimum spanning forest.

o This subtree is not necessarily a tree of the minimum spanning forest.

o It is often referred to as the invasion percolation cluster.

Local limit of Prim’s algorithm Prim’s algorithm Benoit Corsini



Table of Content

B Percolation clusters

Local limit of Prim’s algorithm Percolation clusters Benoit Corsini



Percolation levels

Local limit of Prim’s algorithm Percolation clusters Benoit Corsini



Percolation levels

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Percolation levels

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Percolation levels

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Percolation levels

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

e p=0.00
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Percolation levels

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Percolation levels

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Percolation levels

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Percolation levels

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Percolation levels

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing

order of sizes: CV(p), CP)(p),...
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing

order of sizes: CV(p), CP)(p),...
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing

order of sizes: CV(p), CP)(p),...
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing

order of sizes: CV(p), CP)(p),...
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing

order of sizes: CV(p), CP)(p),...
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing

order of sizes: CV(p), CP)(p),...
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing

order of sizes: CV(p), CP)(p),...

( Definition (proper graph)
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing

order of sizes: CV(p), CP)(p),...

( Definition (proper graph)
A sequence of (finite) graphs (G,,),>1 is proper if there exists 0 : [0, 1] — [0, 1] such that

(1) (2)
lim —‘On (p)‘ =0(p); lim —‘Cn (p)‘

n—o0 n n—oo n

= 0.
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing

order of sizes: CV(p), CP)(p),...

( Definition (proper graph)
A sequence of (finite) graphs (G,,),>1 is proper if there exists 0 : [0, 1] — [0, 1] such that

(1) (2)
lim —‘On (p)‘ =0(p); lim —‘Cn (p)‘

n—o0 n n—oo n

= 0.

Furthermore, 6 should be continuous on (p,, 1] = 6-1((0, 1]).
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Percolation clusters

(QQ: What happens when the graph is infinite?
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Local limit of Prim’s algorithm Percolation clusters Benoit Corsini



Percolation clusters

(QQ: What happens when the graph is infinite?
— The clusters CD(p), C®)(p), ... are usually not well-defined.

Lucky for us, we always consider infinite graphs coupled with a root p.
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— Instead of ordering clusters by sizes, we only consider the cluster containing the root: C,(p).
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— The clusters CD(p), C®)(p), ... are usually not well-defined.

Lucky for us, we always consider infinite graphs coupled with a root p.

— Instead of ordering clusters by sizes, we only consider the cluster containing the root: C,(p).
— We are interested in whether C,(p) is infinite or not.
— Since the underlying graph is random, we study P(|C,(p)| = o0) seen as a function of p € |0, 1].
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Percolation clusters

(QQ: What happens when the graph is infinite?
— The clusters CD(p), C®)(p), ... are usually not well-defined.

Lucky for us, we always consider infinite graphs coupled with a root p.

— Instead of ordering clusters by sizes, we only consider the cluster containing the root: C,(p).
— We are interested in whether C,(p) is infinite or not.
— Since the underlying graph is random, we study P(|C,(p)| = o0) seen as a function of p € |0, 1].

( Definition (proper graph)
A (infinite) graph G'is proper if P(|C,(p)| = c0) > 0 implies that |C,(p)| = oo for some v € G.
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Proper pairs

( Definition (proper pair)
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Proper pairs

( Definition (proper pair)

A pair composed of a sequence of finite graphs (G,,),>1 and an infinite graph G is proper if both
elements are proper and (&, converges locally towards G.
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( Definition (proper pair)

A pair composed of a sequence of finite graphs (G,,),>1 and an infinite graph G is proper if both
elements are proper and (&,, converges locally towards GG. In that case, we further have that
e
0(p) = lim u — P(‘Cp(p)‘ = oo) .

n—o0 n
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( Definition (proper pair)

A pair composed of a sequence of finite graphs (G,,),>1 and an infinite graph G is proper if both
elements are proper and (&,, converges locally towards GG. In that case, we further have that
e
0(p) = lim u — P(‘Cp(p)‘ = oo) .

n—o0 n

— The equality states that a node chosen at random in G;, belongs to the largest component (at
level p) with the same probability that we observe an infinite component (at level p) in G.
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( Definition (proper pair)

A pair composed of a sequence of finite graphs (G,,),>1 and an infinite graph G is proper if both
elements are proper and (&,, converges locally towards GG. In that case, we further have that

(1)
0(p) = lim M — P(‘Cp(p)‘ = oo) .

n—o0 n

— The equality states that a node chosen at random in G;, belongs to the largest component (at
level p) with the same probability that we observe an infinite component (at level p) in G.

— Proper pairs can be seen as sequences of graphs and their limits for which the largest finite
components exactly correspond to an infinite component in the limit.
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Proper pairs
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Proper pairs

Q: What do proper pairs and improper pairs look like?
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Q: What do proper pairs and improper pairs look like?

e Most “natural” pairs of graphs and their limits are proper:

o Finite and infinite grids of any dimension.
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e Most “natural” pairs of graphs and their limits are proper:
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o Attaching two sequences of graphs via one edge usually provides improper (finite) graphs.
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o Attaching two sequences of graphs via one edge usually provides improper (finite) graphs.

o In that case, the limit could still be (infinitely) proper.
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Q: What do proper pairs and improper pairs look like?

e Most “natural” pairs of graphs and their limits are proper:

o Finite and infinite grids of any dimension.
o Configuration models and branching processes.

o Geometric graphs, preferential attachment graphs, Erdos-Rényi graphs, etc.
e Graphs need to be purposefully constructed to be improper:

o Attaching two sequences of graphs via one edge usually provides improper (finite) graphs.
o In that case, the limit could still be (infinitely) proper.

o For an improper (infinite) graph, take the limit of two sequences of graphs with different
critical percolation values.
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Q: What do proper pairs and improper pairs look like?

e Most “natural” pairs of graphs and their limits are proper:

o Finite and infinite grids of any dimension.
o Configuration models and branching processes.

o Geometric graphs, preferential attachment graphs, Erdos-Rényi graphs, etc.
e Graphs need to be purposefully constructed to be improper:

o Attaching two sequences of graphs via one edge usually provides improper (finite) graphs.
o In that case, the limit could still be (infinitely) proper.

o For an improper (infinite) graph, take the limit of two sequences of graphs with different
critical percolation values.

— Attach a 3- and a 4-regular graph together to obtain an improper pair, both finite and infinite.
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Our result

( Theorem (W, Giindlach, & van der Hofstad, 2025+)

Let (G),),>1 and G be a proper pair. Then, the output of Prim’s algorithm on (G,,),>1 after
tn + o(n) steps for any t € |0, 1] converges towards the union of the invasion percolation cluster
on G along with the minimum spanning forest on G percolated at level 61(¢).

Moreover, this convergence occurs as a cadlag process on the space of local convergence.
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Let (G),),>1 and G be a proper pair. Then, the output of Prim’s algorithm on (G,,),>1 after
tn + o(n) steps for any t € |0, 1] converges towards the union of the invasion percolation cluster
on G along with the minimum spanning forest on G percolated at level 61(¢).

Moreover, this convergence occurs as a cadlag process on the space of local convergence.

—» After 0(p)n steps, Prim's algorithm corresponds to the infinite percolation cluster and the
percolated minimum spanning forest.

— Let me now explain this more instinctively.

Local limit of Prim’s algorithm Our result Benoit Corsini



Our result Prim (Q(p)n) — [PC + MST(p)

( Theorem (W, Giindlach, & van der Hofstad, 2025+)

Let (G),),>1 and G be a proper pair. Then, the output of Prim’s algorithm on (G,,),>1 after
tn + o(n) steps for any t € |0, 1] converges towards the union of the invasion percolation cluster
on G along with the minimum spanning forest on G percolated at level 61(¢).

Moreover, this convergence occurs as a cadlag process on the space of local convergence.

—» After 0(p)n steps, Prim's algorithm corresponds to the infinite percolation cluster and the
percolated minimum spanning forest.

— Let me now explain this more instinctively.
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e Take a graph and its local limit both rooted at some node.
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Our result Prim (Q(p)n) — [PC + MST(p)

e Take a graph and its local limit both rooted at some node.

e Apply percolation for some p € [0, 1]
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Our result Prim (Q(p)n) — [PC + MST(p)

e Take a graph and its local limit both rooted at some node.

e Apply percolation for some p € [0, 1] and identify the large components.
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e Take a graph and its local limit both rooted at some node.

e Apply percolation for some p € [0, 1] and identify the large components.
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Our result Prim (Q(p)n) — [PC + MST(p)

e Take a graph and its local limit both rooted at some node.

e Apply percolation for some p € [0, 1] and identify the large components.
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Our result Prim (Q(p)n) — [PC + MST(p)

e Take a graph and its local limit both rooted at some node.

e Apply percolation for some p € [0, 1] and identify the large components.
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Our result Prim (Q(p)n) — [PC + MST(p)

e Take a graph and its local limit both rooted at some node.

e Apply percolation for some p € [0, 1] and identify the large components.
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Our result Prim (Q(p)n) — [PC + MST(p)

e Take a graph and its local limit both rooted at some node.
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Our result Prim (Q(p)n) — [PC + MST(p)

e Take a graph and its local limit both rooted at some node.

e Apply percolation for some p € [0, 1] and identify the large components.

e Start running Prim’s algorithm on both sides. . . ... ... 0oL
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Our result

Prim(6(p)n) — IPC 4+ MST(p)

e Take a graph and its local limit both rooted at some node.

e Apply percolation for some p € [0, 1] and identify the large components.

e Start running Prim’s algorithm on both sides.

o After >~ O(p)n steps:

o finite and infinite look
different;

o but finite Prim equals
infinite Prim combined
with percolation.
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Our result Prim (Q(p)n) — [PC + MST(p)

e Take a graph and its local limit both rooted at some node.
e Apply percolation for some p € [0, 1] and identify the large components.

e Start running Prim’s algorithm on both sides. . . ... ... 0oL

o After >~ O(p)n steps: : : : : :.: :
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