
Local limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit ofLocal limit of
Prim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithmPrim’s algorithm
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16



Local limit

Given a sequence of graphs (Gn)n≥1, their local limit is the structure as seen from a node chosen
uniformly at random.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The sequence of tori ((Z/nZ)d)n≥1 converges towards Zd.

Local limit of Prim’s algorithm Local limit Benôıt Corsini
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33



Regular tree

Q: Is there a sequence of trees whose limit is the infinite binary tree?

Local limit of Prim’s algorithm Local limit Benôıt Corsini
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38



Minimum spanning tree

Given a weighted graph, the minimum spanning tree is the unique tree connecting all nodes which
also minimizes the total edge weights.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Prim’s algorithm is an inductive rooted methods to construct the minimum spanning tree.
• Start with a tree composed of a single node, arbitrarily chosen from the graph.
• Given the current tree, grow it by adding the edge on its boundary of smallest weight.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Prim’s algorithm is an inductive rooted methods to construct the minimum spanning tree.
• Start with a tree composed of a single node, arbitrarily chosen from the graph.
• Given the current tree, grow it by adding the edge on its boundary of smallest weight.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Prim’s algorithm

Prim’s algorithm is an inductive rooted methods to construct the minimum spanning tree.
• Start with a tree composed of a single node, arbitrarily chosen from the graph.
• Given the current tree, grow it by adding the edge on its boundary of smallest weight.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ This algorithm works because of the following key proposition.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Prim’s algorithm

Prim’s algorithm is an inductive rooted methods to construct the minimum spanning tree.
• Start with a tree composed of a single node, arbitrarily chosen from the graph.
• Given the current tree, grow it by adding the edge on its boundary of smallest weight.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ This algorithm works because of the following key proposition.

Proposition
The edges of the minimum spanning tree are exactly those that are never the heaviest on any cycle.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Prim’s algorithm

Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Prim’s algorithm

Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The minimum spanning tree is the entire line.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The minimum spanning tree is the entire line.
→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ Prim’s algorithm also explores the entire line.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Prim’s algorithm

Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The minimum spanning tree is the entire line.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini

80



Prim’s algorithm

888888888888888888888888888888888888888888888888888 444444444444444444444444444444444444444444444444444 222222222222222222222222222222222222222222222222222 111111111111111111111111111111111111111111111111111 0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.5 0.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.25 0.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.1250.125

Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The minimum spanning tree is the entire line.
→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ Prim’s algorithm only explores the right portion of the line.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The minimum spanning tree is not well-defined (or is a forest).

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The minimum spanning tree is not well-defined (or is a forest).
→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ Prim’s algorithm only explores the line on which it starts.

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Prim’s algorithm

Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

Local limit of Prim’s algorithm Prim’s algorithm Benôıt Corsini
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Prim’s algorithm

Properties of Prim’s algorithms:
• It constructs a sequence of trees starting from any given root.
• If the graph has n vertices, the n-th tree of the algorithm is the minimum spanning tree.

Q: What happens when G is infinite?

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The minimum spanning tree does not always exist, but the minimum spanning forest does.
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◦ This subtree is not necessarily a tree of the minimum spanning forest. 3
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◦ This subtree is not necessarily a tree of the minimum spanning forest. 3
◦ It is often referred to as the invasion percolation cluster.
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Percolation levels

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.
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Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

• p ∈ [0, 1]
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97



Percolation levels

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.07

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

• p = 0.00

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini
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0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.07

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

• p = 0.07

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini

99



Percolation levels

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.07

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

• p = 0.30

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini

100



Percolation levels

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.07

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

• p = 0.50

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini

101



Percolation levels

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.07

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

• p = 0.77

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini

102



Percolation levels

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.07

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

• p = 1.00

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini

103



Percolation clusters

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.07

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini

104



Percolation clusters

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.07

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing
order of sizes: C(1)(p), C(2)(p), . . .

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini

105



Percolation clusters

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.07

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing
order of sizes: C(1)(p), C(2)(p), . . .

• p = 0.00

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini

106



Percolation clusters

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.071 2 3

4 5 6

7 8 9

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing
order of sizes: C(1)(p), C(2)(p), . . .

• p = 0.00

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini
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Percolation clusters

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.073 1 1

4 2 1

5 2 2

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing
order of sizes: C(1)(p), C(2)(p), . . .

• p = 0.30

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini
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Percolation clusters

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.071 1 1

2 1 1

3 1 1

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing
order of sizes: C(1)(p), C(2)(p), . . .

• p = 0.50

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini

109



Percolation clusters

0.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.97

0.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.930.93

0.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.22

0.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.780.78

0.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.730.73

0.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.290.29

0.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.510.51 0.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.190.19

0.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.770.77 0.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.320.32

0.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.450.45 0.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.070.071 1 1

1 1 1

1 1 1

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing
order of sizes: C(1)(p), C(2)(p), . . .

• p = 1.00

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing
order of sizes: C(1)(p), C(2)(p), . . .

Definition (proper graph)
A sequence of (finite) graphs (Gn)n≥1 is proper if there exists θ : [0, 1] → [0, 1] such that

lim
n→∞

∣∣C(1)
n (p)

∣∣
n

= θ(p) ; lim
n→∞

∣∣C(2)
n (p)

∣∣
n

= 0 .

Furthermore, θ should be continuous on (pc, 1] = θ−1((0, 1]).

Local limit of Prim’s algorithm Percolation clusters Benôıt Corsini
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Percolation clusters

Given a weighted graph, the percolated subgraph at level p is the graph obained by only keeping
edges whose weight is less or equal than p.

Given a percolation level p, we now consider the connected components of the graph, in decreasing
order of sizes: C(1)(p), C(2)(p), . . .

Definition (proper graph)
A sequence of (finite) graphs (Gn)n≥1 is proper if there exists θ : [0, 1] → [0, 1] such that

lim
n→∞

∣∣C(1)
n (p)

∣∣
n

= θ(p) ; lim
n→∞

∣∣C(2)
n (p)

∣∣
n

= 0 .

Furthermore, θ should be continuous on (pc, 1] = θ−1((0, 1]).
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Proper pairs

Definition (proper pair)
A pair composed of a sequence of finite graphs (Gn)n≥1 and an infinite graph G is proper if both
elements are proper and Gn converges locally towards G. In that case, we further have that

θ(p) := lim
n→∞

∣∣C(1)
n (p)

∣∣
n

= P
(∣∣Cρ(p)

∣∣ = ∞
)

.
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Definition (proper pair)
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elements are proper and Gn converges locally towards G. In that case, we further have that

θ(p) := lim
n→∞

∣∣C(1)
n (p)

∣∣
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Definition (proper pair)
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elements are proper and Gn converges locally towards G. In that case, we further have that

θ(p) := lim
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∣∣
n

= P
(∣∣Cρ(p)

∣∣ = ∞
)

.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ The equality states that a node chosen at random in Gn belongs to the largest component (at
level p) with the same probability that we observe an infinite component (at level p) in G.
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Proper pairs

Q: What do proper pairs and improper pairs look like?
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Q: What do proper pairs and improper pairs look like?

• Most “natural” pairs of graphs and their limits are proper:
◦ Finite and infinite grids of any dimension.
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Q: What do proper pairs and improper pairs look like?

• Most “natural” pairs of graphs and their limits are proper:
◦ Finite and infinite grids of any dimension.
◦ Configuration models and branching processes.
◦ Geometric graphs, preferential attachment graphs, Erdős-Rényi graphs, etc.

• Graphs need to be purposefully constructed to be improper:
◦ Attaching two sequences of graphs via one edge usually provides improper (finite) graphs.
◦ In that case, the limit could still be (infinitely) proper.
◦ For an improper (infinite) graph, take the limit of two sequences of graphs with different

critical percolation values.
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Q: What do proper pairs and improper pairs look like?

• Most “natural” pairs of graphs and their limits are proper:
◦ Finite and infinite grids of any dimension.
◦ Configuration models and branching processes.
◦ Geometric graphs, preferential attachment graphs, Erdős-Rényi graphs, etc.

• Graphs need to be purposefully constructed to be improper:
◦ Attaching two sequences of graphs via one edge usually provides improper (finite) graphs.
◦ In that case, the limit could still be (infinitely) proper.
◦ For an improper (infinite) graph, take the limit of two sequences of graphs with different

critical percolation values.

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ Attach a 3- and a 4-regular graph together to obtain an improper pair, both finite and infinite.
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Our result

Theorem (♂, Gündlach, & van der Hofstad, 2025+)
Let (Gn)n≥1 and G be a proper pair. Then, the output of Prim’s algorithm on (Gn)n≥1 after
tn + o(n) steps for any t ∈ [0, 1] converges towards the union of the invasion percolation cluster
on G along with the minimum spanning forest on G percolated at level θ−1(t).

Moreover, this convergence occurs as a cadlag process on the space of local convergence.
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• Apply percolation for some p ∈ [0, 1] and identify the large components.
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159



Our result Prim
(
θ(p)n

)
−→ IPC + MST(p)

• Take a graph and its local limit both rooted at some node.
• Apply percolation for some p ∈ [0, 1] and identify the large components.
• Start running Prim’s algorithm on both sides.
• After ≃ θ(p)n steps:

Local limit of Prim’s algorithm Our result Benôıt Corsini
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Our result Prim
(
θ(p)n

)
−→ IPC + MST(p)

• Take a graph and its local limit both rooted at some node.
• Apply percolation for some p ∈ [0, 1] and identify the large components.
• Start running Prim’s algorithm on both sides.
• After ≃ θ(p)n steps:

◦ finite and infinite look
different;

◦ but finite Prim equals
infinite Prim combined
with percolation.
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166



Thank you!
Thank you!
Thank you!

Thank you!
Thank you!

Thank you!
Thank you!

Thankyou!

Thank you! Thank you!Thank you!Thank you!

Local limit of Prim’s algorithm Thank you! Benôıt Corsini
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